ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION x2 + Akn = B

被引:1
|
作者
Zhang, Zhongfeng [1 ]
Togbe, Alain [2 ]
机构
[1] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
[2] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 S US 421, Westville, IN 46391 USA
关键词
Diophantine equation; Pell equations; NUMBER;
D O I
10.3336/gm.53.1.04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the Ramanujan-Nagell type Diophantine equation x(2) + Ak(n) = B has at most three nonnegative integer solutions (x, n) for A = 1, 2, 4, k an odd prime and B a positive integer. Therefore, we partially confirm two conjectures of Ulas from [23].
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [21] Yet another generalization of the Ramanujan-Nagell equation
    Bennett, M. A.
    Filaseta, M.
    Trifonov, O.
    ACTA ARITHMETICA, 2008, 134 (03) : 211 - 217
  • [22] On the number of solutions of the generalized Ramanujan-Nagell equation
    Bugeaud, Y
    Shorey, TN
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 539 : 55 - 74
  • [23] An elementary approach to the generalized Ramanujan-Nagell equation
    Mutlu, Elif Kizildere
    Le, Maohua
    Soydan, Gokhan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 392 - 399
  • [24] ON THE GENERALIZED RAMANUJAN-NAGELL EQUATION-I
    BEUKERS, F
    ACTA ARITHMETICA, 1981, 38 (04) : 389 - 410
  • [25] ON THE GENERALIZED RAMANUJAN-NAGELL EQUATION .1.
    LE, MH
    KEXUE TONGBAO, 1984, 29 (02): : 278 - 279
  • [26] A modular approach to the generalized Ramanujan-Nagell equation
    Mutlu, Elif Kizildere
    Le, Maohua
    Soydan, Gokhan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (05): : 992 - 1000
  • [27] On the number of solutions to the generalized Ramanujan-Nagell equation
    Fujita, Yasutsugu
    Le, Maohua
    RAMANUJAN JOURNAL, 2025, 67 (01):
  • [28] 关于Ramanujan-Nagell型方程x2+2~n=B
    张中峰
    柏萌
    西南师范大学学报(自然科学版), 2017, 42 (06) : 5 - 7
  • [29] ON THE NUMBER OF SOLUTIONS OF THE GENERALIZED RAMANUJAN-NAGELL EQUATION X2-D=PN
    MAOHUA, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1994, 45 (3-4): : 239 - 254
  • [30] Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation
    Bauer, M
    Bennett, MA
    RAMANUJAN JOURNAL, 2002, 6 (02): : 209 - 270