A NOTE ON THE NON-COMMUTATIVE LAPLACE-VARADHAN INTEGRAL LEMMA

被引:4
|
作者
De Roeck, W. [1 ]
Maes, Christian [2 ]
Netocny, Karel [3 ]
Rey-Bellet, Luc [4 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, D-6900 Heidelberg, Germany
[2] Katholieke Univ Leuven, Inst Theoret Fys, Louvain, Belgium
[3] Acad Sci Czech Republ, Inst Phys, Prague, Czech Republic
[4] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
Quantum large deviations; quantum lattice systems; Laplace-Varadhan lemma; LARGE DEVIATIONS; STATES;
D O I
10.1142/S0129055X10004089
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue the study of the free energy of quantum lattice spin systems where to the local Hamiltonian H an arbitrary mean field term is added, a polynomial function of the arithmetic mean of some local observables X and Y that do not necessarily commute. By slightly extending a recent paper by Hiai, Mosonyi, Ohno and Petz [10], we prove in general that the free energy is given by a variational principle over the range of the operators X and Y. As in [10], the result is a non-commutative extension of the Laplace-Varadhan asymptotic formula.
引用
收藏
页码:839 / 858
页数:20
相关论文
共 50 条