Mapping gauged Q-balls

被引:19
|
作者
Heeck, Julian [1 ]
Rajaraman, Arvind [2 ]
Riley, Rebecca [2 ]
Verhaaren, Christopher B. [2 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.103.116004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Scalar field theories with particular U(1)-symmetric potentials contain nontopological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interacting Q-balls
    Brihaye, Yves
    Hartmann, Betti
    NONLINEARITY, 2008, 21 (08) : 1937 - 1952
  • [22] Excited Q-balls
    Yahya Almumin
    Julian Heeck
    Arvind Rajaraman
    Christopher B. Verhaaren
    The European Physical Journal C, 82
  • [23] Excited Q-balls
    Almumin, Yahya
    Heeck, Julian
    Rajaraman, Arvind
    Verhaaren, Christopher B.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (09):
  • [24] Q-balls in the MSSM
    Kusenko, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 62 : 248 - 252
  • [25] Singularity-free model of electrically charged fermionic particles and gauged Q-balls
    Dzhunushaliev, Vladimir
    Makhmudov, Arislan
    Zloshchastiev, Konstantin G.
    PHYSICAL REVIEW D, 2016, 94 (09)
  • [26] Q-balls in polynomial potentials
    Heeck, Julian
    Sokhashvili, Mikheil
    PHYSICAL REVIEW D, 2023, 107 (01)
  • [27] Vibrational modes of Q-balls
    Kovtun, A.
    Nugaev, E.
    Shkerin, A.
    PHYSICAL REVIEW D, 2018, 98 (09)
  • [28] Q-walls to Q-balls
    MacKenzie, R
    Paranjape, MB
    FROM PARTICLES TO THE UNIVERSE, 2001, : 366 - 370
  • [29] Stability of Q-balls and catastrophe
    Sakai, Nobuyuki
    Sasaki, Misao
    PROGRESS OF THEORETICAL PHYSICS, 2008, 119 (06): : 929 - 937
  • [30] On the quantum stability of Q-balls
    Anders Tranberg
    David J. Weir
    Journal of High Energy Physics, 2014