THE PERIODIC PATCH MODEL FOR POPULATION DYNAMICS WITH FRACTIONAL DIFFUSION

被引:39
|
作者
Berestycki, Henri [1 ]
Roquejoffre, Jean-Michel [2 ]
Rossi, Luca [3 ]
机构
[1] CAMS, Ecole Hautes Etud Sci Sociales, 54 Bd Raspail, F-75270 Paris, France
[2] Univ Paul Sabatier, Inst Math, F-31062 Toulouse 4, France
[3] Univ Padua, Dipartimento Matemat Pura Applicata, I-35121 Padua, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2011年 / 4卷 / 01期
关键词
Fractional diffusion; reaction-diffusion equation; KPP nonlinearity; persistence;
D O I
10.3934/dcdss.2011.4.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Numerical algorithm for fractional order population dynamics model with delay
    Gorbova, T. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 91 - 103
  • [22] SPATIAL DYNAMICS OF A NONLOCAL AND DELAYED POPULATION MODEL IN A PERIODIC HABITAT
    Weng, Peixuan
    Zhao, Xiao-Qiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) : 343 - 366
  • [23] Adaptive Hierarchical Collocation Method for Solving Fractional Population Diffusion Model
    Yang, Linqiang
    Liu, Yafei
    Ma, Hongmei
    Liu, Xue
    Mei, Shuli
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [24] Population model with diffusion and supplementary forest resource in a two-patch habitat
    Dhar, Joydip
    APPLIED MATHEMATICAL MODELLING, 2008, 32 (07) : 1219 - 1235
  • [25] Propagation dynamics for a time-periodic reaction–diffusion SI epidemic model with periodic recruitment
    Lin Zhao
    Zhi-Cheng Wang
    Liang Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [26] Dynamics of a multi-strain malaria model with diffusion in a periodic environment
    Shi, Yangyang
    Zhao, Hongyong
    Zhang, Xuebing
    JOURNAL OF BIOLOGICAL DYNAMICS, 2022, 16 (01) : 766 - 815
  • [27] Model of chromosomal loci dynamics in bacteria as fractional diffusion with intermittent transport
    Gherardi, Marco
    Calabrese, Ludovico
    Tamm, Mikhail
    Lagomarsino, Marco Cosentino
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [28] Nonlinear fractional diffusion model for space-time neutron dynamics
    Hamada, Yasser Mohamed
    PROGRESS IN NUCLEAR ENERGY, 2022, 154
  • [29] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    Lenzi, E. K.
    Lenzi, M. K.
    Zola, R. S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [30] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    E. K. Lenzi
    M. K. Lenzi
    R. S. Zola
    The European Physical Journal Plus, 134