THE PERIODIC PATCH MODEL FOR POPULATION DYNAMICS WITH FRACTIONAL DIFFUSION

被引:39
|
作者
Berestycki, Henri [1 ]
Roquejoffre, Jean-Michel [2 ]
Rossi, Luca [3 ]
机构
[1] CAMS, Ecole Hautes Etud Sci Sociales, 54 Bd Raspail, F-75270 Paris, France
[2] Univ Paul Sabatier, Inst Math, F-31062 Toulouse 4, France
[3] Univ Padua, Dipartimento Matemat Pura Applicata, I-35121 Padua, Italy
关键词
Fractional diffusion; reaction-diffusion equation; KPP nonlinearity; persistence;
D O I
10.3934/dcdss.2011.4.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Fractional diffusion in periodic potentials
    Heinsalu, E.
    Patriarca, M.
    Goychuk, I.
    Haenggi, P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
  • [2] Periodic solutions of a population dynamics model with hysteresis
    Timoshin, Sergey A.
    Wang, Yifu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
  • [3] Spatial dynamics of a periodic population model with dispersal
    Jin, Yu
    Zhao, Xiao-Qiang
    NONLINEARITY, 2009, 22 (05) : 1167 - 1189
  • [4] Fractional model of stem cell population dynamics
    Mashayekhi, S.
    Sedaghat, S.
    CHAOS SOLITONS & FRACTALS, 2021, 146
  • [5] DYNAMICS FOR A NON-AUTONOMOUS REACTION DIFFUSION MODEL WITH THE FRACTIONAL DIFFUSION
    Tan, Wen
    Sun, Chunyou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (12) : 6035 - 6067
  • [6] The effect of diffusion on the permanence of Smith population model in a polluted patch
    Yang, Zhuoqin
    Lu, Qishao
    Yang, Zaizhong
    Communications in Nonlinear Science and Numerical Simulation, 2001, 6 (04) : 217 - 221
  • [7] The effect of diffusion on the permanence of Smith population model in a polluted patch
    Zhuoqin YANG
    Department of Mathematics
    CommunicationsinNonlinearScience&NumericalSimulation, 2001, (04) : 217 - 221
  • [8] Wavefront Dynamics in a Population Model with Anomalous Diffusion
    Asmaa H. Abobakr
    Hussien S. Hussien
    Mahmoud B. A. Mansour
    Hillal M. Elshehabey
    International Journal of Applied and Computational Mathematics, 2024, 10 (5)
  • [9] Approximate solutions of fuzzy fractional population dynamics model
    Moa’ath N. Oqielat
    Tareq Eriqat
    Osama Ogilat
    Zaid Odibat
    Zeyad Al-Zhour
    Ishak Hashim
    The European Physical Journal Plus, 137
  • [10] A numerical study of fractional order population dynamics model
    Jafari, H.
    Ganji, R. M.
    Nkomo, N. S.
    Lv, Y. P.
    RESULTS IN PHYSICS, 2021, 27