Real-Time Traffic Sign Detection and Recognition System Based on FriendlyARM Tiny4412 Board

被引:0
|
作者
Truong Quang Vinh [1 ]
机构
[1] Ho Chi Minh City Univ Technol HCM VNU, Fac Elect & Elect Engn, Ho Chi Minh, Vietnam
关键词
traffic sign; color segmentation; FriendlyARM; ARM Cortex-A9; SVM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a design and implementation of the real-time traffic sign detection and recognition system based FriendlyARM Tiny4412 board. We develop an algorithm for detecting and recognizing the traffic signs in Vietnam with real-time processing capability and high accuracy. To achieve these objectives, we employ three main techniques consisting of traffic sign extraction based on chromatic color segmentation, shape matching, and support vector machine (SVM). Moreover, we apply multi-threading method for quad-core ARM Cortex-A9 processor on FriendlyARM board to enhance the real-time capability of the system. The experimental result shows that our system can detect and recognize the traffic signs with accuracy of 90.1% at 15 frames per second on FriendlyARM Tiny4412 board. The proposed system can be equipped on cars to support drivers tracking traffic signs.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条
  • [21] Real-Time Traffic Sign Detection Based on YOLOv2
    Zhu, Huan
    Zhang, Chongyang
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [22] Real-time detection network for tiny traffic sign using multi-scale attention module
    YANG TingTing
    TONG Chao
    Science China(Technological Sciences), 2022, 65 (02) : 396 - 406
  • [23] Real-time detection network for tiny traffic sign using multi-scale attention module
    TingTing Yang
    Chao Tong
    Science China Technological Sciences, 2022, 65 : 396 - 406
  • [24] LIDAR and Vision-Based Real-Time Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicle
    Zhou, Lipu
    Deng, Zhidong
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 578 - 583
  • [25] Real-time detection network for tiny traffic sign using multi-scale attention module
    Yang TingTing
    Tong Chao
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (02) : 396 - 406
  • [26] Real-time traffic sign detection and classification towards real traffic scene
    Yiqiang Wu
    Zhiyong Li
    Ying Chen
    Ke Nai
    Jin Yuan
    Multimedia Tools and Applications, 2020, 79 : 18201 - 18219
  • [27] Real-time traffic sign detection and classification towards real traffic scene
    Wu, Yiqiang
    Li, Zhiyong
    Chen, Ying
    Nai, Ke
    Yuan, Jin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (25-26) : 18201 - 18219
  • [28] Soft computing based real-time traffic sign recognition: A design approach
    Bajaj, P
    Dalavi, A
    Dubey, S
    Mouza, M
    Batra, S
    Bhojwani, S
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2005, 3681 : 1070 - 1074
  • [29] Real-Time Traffic Sign Recognition Based on Zynq FPGA and ARM SoCs
    Han, Yan
    Oruklu, Erdal
    2014 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2014, : 373 - 376
  • [30] Towards Real-Time Traffic Sign Detection and Classification
    Yang, Yi
    Luo, Hengliang
    Xu, Huarong
    Wu, Fuchao
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 87 - 92