Using Deep Learning Framework (pytorch) for Circular Cone Treatment Planning of CyberKnife System

被引:0
|
作者
Liang, B. [1 ]
Wei, R. [1 ]
Li, Y. [2 ]
Liu, B. [3 ,4 ]
Xu, S. [5 ]
Zhou, F. [3 ]
Wu, Q. [6 ]
Dai, J. [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Clin Res Ctr Canc, Natl Canc Ctr, Beijing, Peoples R China
[2] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Canc Ctr,State Key Lab Oncol South China, Guangzhou, Guangdong, Peoples R China
[3] Beihang Univ, Image Proc Ctr, Beijing, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Beijing, Peoples R China
[6] Duke Univ, Med Ctr, Durham, NC USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TH-E-TRACK
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Application of Deep Learning for Fast Radiation Treatment Planning
    Jkim, Y.
    Kyoon, D.
    Ipark, Y.
    Bshin, H.
    Skim, M.
    Mkim, S.
    Ssuh, T.
    MEDICAL PHYSICS, 2018, 45 (06) : E265 - E266
  • [42] Optimizing Individualized Treatment Planning for Parkinson's Disease Using Deep Reinforcement Learning
    Watts, Jeremy
    Khojandi, Anahita
    Vasudevan, Rama
    Ramdhani, Ritesh
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5406 - 5409
  • [43] Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model
    Eun Mi Song
    Beomhee Park
    Chun-Ae Ha
    Sung Wook Hwang
    Sang Hyoung Park
    Dong-Hoon Yang
    Byong Duk Ye
    Seung-Jae Myung
    Suk-Kyun Yang
    Namkug Kim
    Jeong-Sik Byeon
    Scientific Reports, 10
  • [44] Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model
    Song, Eun Mi
    Park, Beomhee
    Ha, Chun-Ae
    Hwang, Sung Wook
    Park, Sang Hyoung
    Yang, Dong-Hoon
    Ye, Byong Duk
    Myung, Seung-Jae
    Yang, Suk-Kyun
    Kim, Namkug
    Byeon, Jeong-Sik
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [45] MR-based treatment planning in radiation therapy using a deep learning approach
    Liu, Fang
    Yadav, Poonam
    Baschnagel, Andrew M.
    McMillan, Alan B.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (03): : 105 - 114
  • [46] Brachytherapy treatment planning for vaginal cylinder applicator using Deep Learning Neural Network
    Safigholi, H.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1580 - S1581
  • [47] Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning
    Shen, Chenyang
    Nguyen, Dan
    Chen, Liyuan
    Gonzalez, Yesenia
    McBeth, Rafe
    Qin, Nan
    Jiang, Steve B.
    Jia, Xun
    MEDICAL PHYSICS, 2020, 47 (06) : 2329 - 2336
  • [48] Employing deep reinforcement learning for machining process planning: An improved framework
    Zhang, Hang
    Wang, Wenhu
    Wang, Yue
    Zhang, Yajun
    Zhou, Jingtao
    Huang, Bo
    Zhang, Shusheng
    JOURNAL OF MANUFACTURING SYSTEMS, 2025, 78 : 370 - 393
  • [49] A Decision-Making Framework for Load Rating Planning of Aging Bridges Using Deep Reinforcement Learning
    Cheng, Minghui
    Frangopol, Dan M.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2021, 35 (06)
  • [50] Emotion Detection-Based Video Recommendation System Using Machine Learning and Deep Learning Framework
    Bokhare A.
    Kothari T.
    SN Computer Science, 4 (3)