共 50 条
Small perturbations in generalized Cohen-Macaulay local rings
被引:3
|作者:
Pham Hung Quy
[1
]
Van Duc Trung
[2
]
机构:
[1] FPT Univ, Dept Math, Hanoi, Vietnam
[2] Univ Genoa, Dept Math, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词:
Hilbert function;
Small perturbation;
Generalized Cohen-Macaulay ring;
Local cohomology;
HILBERT-FUNCTIONS;
D O I:
10.1016/j.jalgebra.2021.08.007
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (R, m) be a generalized Cohen-Macaulay local ring of dimension d, and f(1),..., f(r) a part of system of parameters of R. In this paper we give explicit numbers Nsuch that the lengths of all lower local cohomology modules and the Hilbert function of R/( f(1),..., f(r)) are preserved when we perturb the sequence f(1),..., f(r) by epsilon(1),..., epsilon(r) is an element of m(N). The second assertion extends a previous result of Srinivas and Trivedi for generalized Cohen-Macaulay rings. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:555 / 568
页数:14
相关论文