Super Stretchable, Self-Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor-Made Ionic Liquid for High-Performance Strain Sensors

被引:307
|
作者
Yao, Xue [1 ]
Zhang, Sufeng [1 ]
Qian, Liwei [1 ]
Wei, Ning [1 ]
Nica, Valentin [1 ]
Coseri, Sergiu [2 ]
Han, Fei [3 ]
机构
[1] Shaanxi Univ Sci & Technol, Key Lab Paper Based Funct Mat China Natl Light In, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Shaanxi Prov Key Lab Papermaking Technol & Specia, Xian 710021, Peoples R China
[2] Romanian Acad, Petru Poni Inst Macromol Chem, 41 A Gr Ghica Voda Alley, Iasi 700487, Romania
[3] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Bioinspired Engn & Biomech Ctr BEBC, Minist Educ,Key Lab Biomed Informat Engn, Xian 710049, Peoples R China
关键词
cellulose nanofibrils; conductive hydrogels; ionic liquids; multifunctional sensors; self-adhesion; self-healing; POLY(IONIC LIQUID); TRANSPARENT; SKIN;
D O I
10.1002/adfm.202204565
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic conductive hydrogels (ICHs) integrate the conductive performance and soft nature of tissue-like materials to imitate the features of human skin with mechanical and sensory traits; thus, they are considered promising substitutes for conventional rigid metallic conductors when fabricating human-motion sensors. However, the simultaneous incorporation of excellent stretchability, toughness, ionic conductivity, self-healing, and adhesion via a simple method remains a grand challenge. Herein, a novel ICH platform is proposed by designing a phenylboronic acid-ionic liquid (PBA-IL) with multiple roles that simultaneously realize the highly mechanical, electrical, and versatile properties. This elaborately designed semi-interpenetrating network ICH is fabricated via a facile one-step approach by introducing cellulose nanofibrils (CNFs) into the PBA-IL/acrylamide cross-linked network. Ingeniously, the dynamic boronic ester bonds and physical interactions (hydrogen bonds and electrostatic interactions) of the cross-linked network endow these hydrogels with remarkable stretchability (1810 +/- 38%), toughness (2.65 +/- 0.03 MJ m(-3)), self-healing property (92 +/- 2% efficiency), adhesiveness, and transparency. Moreover, the construction of this material shows that CNFs can synergistically enhance mechanical performance and conductivity. The wide working strain range (approximate to 1000%) and high sensitivity (GF = 8.36) make this ICH a promising candidate for constructing the next generation of gel-based strain sensor platforms.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors
    Li, Yongji
    Yang, Dan
    Wu, Zhiyi
    Gao, Fu-Lin
    Gao, Xuan-Zhi
    Zhao, Hao-Yu
    Li, Xiaofeng
    Yu, Zhong-Zhen
    NANO ENERGY, 2023, 109
  • [32] Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors
    Zhao, Yusen
    Zhang, Bozhen
    Yao, Bowen
    Qiu, Yu
    Peng, Zihang
    Zhang, Yucheng
    Alsaid, Yousif
    Frenkel, Imri
    Youssef, Kareem
    Pei, Qibing
    He, Ximin
    MATTER, 2020, 3 (04) : 1196 - 1210
  • [33] Muscle-Mimetic Highly Tough, Conductive, and Stretchable Poly(ionic liquid) Liquid Crystalline lonogels with Ultrafast Self-Healing, Super Adhesive, and Remarkable Shape Memory Properties
    Li, Tianci
    Liu, Fang
    Yang, Xuemeng
    Hao, Shuai
    Cheng, Yan
    Li, Shuaijie
    Zhu, Hongnan
    Song, Hongzan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) : 29261 - 29272
  • [34] High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy
    Di, Xiang
    Ma, Qiyue
    Xu, Yue
    Yang, Mingming
    Wu, Guolin
    Sun, Pingchuan
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (01) : 315 - 323
  • [35] Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions
    Pei, Xinjie
    Zhang, Hua
    Zhou, Yang
    Zhou, Linjie
    Fu, Jun
    MATERIALS HORIZONS, 2020, 7 (07) : 1872 - 1882
  • [36] Stretchable, adhesive and self-healing conductive hydrogels based on PEDOT:PSS-stabilized liquid metals for human motion detection
    Zhao, Kai
    Zhao, Yanbo
    Xu, Jing
    Qian, Rong
    Yu, Zhumin
    Ye, Changqing
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [37] High-Performance Flexible Sensors of Self-Healing, Reversibly Adhesive, and Stretchable Hydrogels for Monitoring Large and Subtle Strains (vol 305, 1900621, 2020)
    Zhou, Hongwei
    Li, Shuangli
    Liu, Hanbin
    Zheng, Bohui
    Jin, Xilang
    Ma, Aijie
    Chen, Weixing
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (03)
  • [38] Ionic liquid-based self-healing gel electrolyte for high-performance lithium metal batteries
    Chen, Xiaoyi
    Yi, Lingguang
    Liu, Jiali
    Luo, Zhigao
    Shen, Yongqiang
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2024, 603
  • [39] Robust, fatigue resistant, self-healing and antifreeze ionic conductive supramolecular hydrogels for wearable flexible sensors
    Yang, Jia
    Kang, Qiong
    Zhang, Bin
    Tian, Xiyu
    Liu, Shuzheng
    Qin, Gang
    Chen, Qiang
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 162 - 170
  • [40] Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self Adhesive, and Self-Healing Ionic Sensors
    Qiao, Haiyan
    Qi, Pengfei
    Zhang, Xiaohui
    Wang, Linan
    Tan, Yeqiang
    Luan, Zhaohui
    Xia, Yanzhi
    Li, Yanhui
    Sui, Kunyan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (08) : 7755 - 7763