COVID-19 Diagnosis with Deep Learning

被引:1
|
作者
Reis, Hatice Catal [1 ]
机构
[1] Gumushane Univ, Dept Geomat Engn, Gumushane, Turkey
来源
INGENIERIA E INVESTIGACION | 2022年 / 42卷 / 01期
关键词
COVID-19; deep learning; convolutional neural network; Zeiler and Fergus network; dense convolutional network-121; CLASSIFICATION;
D O I
10.15446/ing.investig.v42n1.88825
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coronavirus disease 2019 (COVID-19) is fatal and spreading rapidly. Early detection and diagnosis of the COVID-19 infection will prevent rapid spread. This study aims to automatically detect COVID-19 through a chest computed tomography (CT) dataset. The standard models for automatic COVID-19 detection using raw chest CT images are presented. This study uses convolutional neural network (CNN), Zeiler and Fergus network (ZFNet), and dense convolutional network-121 (DenseNet121) architectures of deep convolutional neural network models. The proposed models are presented to provide accurate diagnosis for binary classification. The datasets were obtained from a public database. This retrospective study included 757 chest CT images (360 confirmed COVID-19 and 397 non-COVID-19 chest CT images). The algorithms were coded using the Python programming language. The performance metrics used were accuracy, precision, recall, F1-score, and ROC-AUC. Comparative analyses are presented between the three models by considering hyper-parameter factors to find the best model. We obtained the best performance, with an accuracy of 94,7%, a recall of 90%, a precision of 100%, and an F1-score of 94,7% from the CNN model. As a result, the CNN algorithm is more accurate and precise than the ZFNet and DenseNet121 models. This study can present a second point of view to medical staff.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Deep Learning and Medical Image Analysis for COVID-19 Diagnosis and Prediction
    Liu, Tianming
    Siegel, Eliot
    Shen, Dinggang
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2022, 24 : 179 - 201
  • [22] A COVID-19 Visual Diagnosis Model Based on Deep Learning and GradCAM
    Hemied, Omar S.
    Gadelrab, Mohammed S.
    Sharara, Elsayed A.
    Soliman, Taysir Hassan A.
    Tsuji, Akinori
    Terada, Kenji
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (07) : 1038 - 1047
  • [23] Leveraging deep learning for COVID-19 diagnosis through chest imaging
    Yashika Khurana
    Umang Soni
    Neural Computing and Applications, 2022, 34 : 14003 - 14012
  • [24] Deep Learning Models for the Diagnosis and Screening of COVID-19: A Systematic Review
    Siddiqui S.
    Arifeen M.
    Hopgood A.
    Good A.
    Gegov A.
    Hossain E.
    Rahman W.
    Hossain S.
    Al Jannat S.
    Ferdous R.
    Masum S.
    SN Computer Science, 3 (5)
  • [25] Challenges of deep learning diagnosis for COVID-19 from chest imaging
    Rawan Alaufi
    Manal Kalkatawi
    Felwa Abukhodair
    Multimedia Tools and Applications, 2024, 83 : 14337 - 14361
  • [26] An Interpretation Architecture for Deep Learning Models with the Application of COVID-19 Diagnosis
    Wan, Yuchai
    Zhou, Hongen
    Zhang, Xun
    ENTROPY, 2021, 23 (02) : 1 - 19
  • [27] MultiCOVID: a multi modal deep learning approach for COVID-19 diagnosis
    Hardy-Werbin, Max
    Maria Maiques, Jose
    Busto, Marcos
    Cirera, Isabel
    Aguirre, Alfons
    Garcia-Gisbert, Nieves
    Zuccarino, Flavio
    Carbullanca, Santiago
    Alexander Del Carpio, Luis
    Ramal, Didac
    Gayete, Angel
    Martinez-Roldan, Jordi
    Marquez-Colome, Albert
    Bellosillo, Beatriz
    Gibert, Joan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] COVID-19 Disease Diagnosis using Smart Deep Learning Techniques
    Kavitha, M.
    Jayasankar, T.
    Venkatesh, P. Maheswara
    Mani, G.
    Bharatiraja, C.
    Twala, Bhekisipho
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 271 - 277
  • [29] A Deep Learning Framework for COVID-19 Diagnosis from Computed Tomography
    Mansouri, Nabila
    Sultan, Khalid
    Ahmad, Aakash
    Alseadoon, Ibrahim
    Alkhalil, Adal
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (02): : 1247 - 1264
  • [30] Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment
    Jamshidi, Mohammad Behdad
    Lalbakhsh, Ali
    Talla, Jakub
    Peroutka, Zdenek
    Hadjilooei, Farimah
    Lalbakhsh, Pedram
    Jamshidi, Morteza
    La Spada, Luigi
    Mirmozafari, Mirhamed
    Dehghani, Mojgan
    Sabet, Asal
    Roshani, Saeed
    Roshani, Sobhan
    Bayat-Makou, Nima
    Mohamadzade, Bahare
    Malek, Zahra
    Jamshidi, Alireza
    Kiani, Sarah
    Hashemi-Dezaki, Hamed
    Mohyuddin, Wahab
    IEEE ACCESS, 2020, 8 : 109581 - 109595