Exploiting input sparsity for joint state/input moving horizon estimation

被引:16
|
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 Box 2420, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
State estimation; Input estimation; Moving horizon estimation; l(1)-norm optimization; Compressive sensing; COMPRESSED SENSING TECHNIQUES; MINIMUM-VARIANCE INPUT; TIRE FORCE ESTIMATION; STATE ESTIMATION; IDENTIFICATION; RECONSTRUCTION; DAMAGE;
D O I
10.1016/j.ymssp.2017.08.024
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a novel time domain approach for joint state/input estimation of mechanical systems. The novelty consists of exploiting compressive sensing (CS) principles in a moving horizon estimator (MHE), allowing the observation of a large number of input locations given a small set of measurements. Existing techniques are characterized by intrinsic limitations when estimating multiple input locations, due to an observability decrease. Moreover, CS does not require an input to be characterized by a slow dynamics, which is a requirement of other state of the art techniques for input modeling. In the new approach, called compressive sensing-moving horizon estimator (CS-MHE), the capability of the MHE of minimizing the noise while correlating a model with measurements is enriched with an-norm optimization in order to promote a sparse solution for the input estimation. A numerical example shows that the CS-MHE allows for an unknown input estimation in terms of magnitude, time and location, exploiting the assumption that the input is sparse in time and space. Finally, an experimental setup is presented as validation case. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [31] Identification of unbalance in a rotor system using a joint input-state estimation technique
    Shrivastava, Akash
    Mohanty, Amiya R.
    JOURNAL OF SOUND AND VIBRATION, 2019, 442 : 414 - 427
  • [32] Optimal Time-Delayed Joint Input and State Estimation for Systems with Unknown Inputs
    Hsieh, Chien-Shu
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4426 - 4431
  • [33] Joint State and Parameter Estimation for Hypersonic Glide Vehicles Based on Moving Horizon Estimation via Carleman Linearization
    Hu, Yudong
    Gao, Changsheng
    Jing, Wuxing
    AEROSPACE, 2022, 9 (04)
  • [34] Moving-Horizon Predictive Input Design for Closed-Loop Identification
    Yousefi, M.
    Rippon, L. D.
    Forbes, M. G.
    Gopaluni, R. B.
    Loewen, P. D.
    Dumont, G. A.
    Backstrom, J.
    IFAC PAPERSONLINE, 2015, 48 (08): : 135 - 140
  • [35] State Estimation with Unknown Input Signal.
    Engell, S.
    Konik, D.
    Automatisierungstechnik, 1986, 34 (01): : 38 - 42
  • [36] UNKNOWN INPUT AND STATE ESTIMATION FOR UNOBSERVABLE SYSTEMS
    Bejarano, Francisco J.
    Fridman, Leonid
    Poznyak, Alexander
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) : 1155 - 1178
  • [37] A new algorithm for simultaneous input and state estimation
    Fang, Huazhen
    Shi, Yang
    Yi, Jingang
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 2421 - +
  • [38] Detection and estimation of abrupt changes in input or state
    Weston, PF
    Norton, JP
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 67 (05) : 699 - 711
  • [39] State and input estimation for a class of uncertain systems
    Corless, M
    Tu, J
    AUTOMATICA, 1998, 34 (06) : 757 - 764
  • [40] State and input estimation for a class of uncertain systems
    Purdue Univ, West Lafayette, United States
    Automatica, 6 (757-764):