A Monge-Kantorovich mass transport problem for a discrete distance

被引:14
|
作者
Igbida, N. [2 ]
Mazon, J. M. [1 ]
Rossi, J. D. [3 ]
Toledo, J. [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
[2] Univ Limoges, Fac Sci & Tech, UMR CNRS 6172, Inst Rech XLIM, F-87065 Limoges, France
[3] Univ Buenos Aires, FCEyN, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Mass transport; Nonlocal problems; Monge-Kantorovich problems; LAPLACIAN EVOLUTION EQUATION; DENSITY;
D O I
10.1016/j.jfa.2011.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a Monge Kantorovich mass transport problem in which in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length of a step and the distance that measures the cost of the transport depends of the number of steps that is needed to transport the involved mass from its origin to its destination. For this problem we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean distance. We also study how these problems, when resealing the step distance, approximate the classical problem. In particular we obtain, taking limits in the resealed nonlocal formulation, the PDE formulation given by Evans Gangbo for the classical problem. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3494 / 3534
页数:41
相关论文
共 50 条
  • [2] A characterization for solutions of the Monge-Kantorovich mass transport problem
    Abbas Moameni
    Mathematische Annalen, 2016, 365 : 1279 - 1304
  • [4] Quantum Monge-Kantorovich Problem and Transport Distance between Density Matrices
    Friedland, Shmuel
    Eckstein, Michal
    Cole, Sam
    Zyczkowski, Karol
    PHYSICAL REVIEW LETTERS, 2022, 129 (11)
  • [5] Remarks on the Monge-Kantorovich problem in the discrete setting
    Brezis, Haim
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 207 - 213
  • [6] Limits for Monge-Kantorovich mass transport problems
    Garcia Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (04) : 853 - 865
  • [7] On regularity of transport density in the Monge-Kantorovich problem
    Buttazzo, G
    Stepanov, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (03) : 1044 - 1055
  • [8] Computing the Monge-Kantorovich distance
    Mendivil, F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03): : 1389 - 1402
  • [9] The multistochastic Monge-Kantorovich problem
    Gladkov, Nikita A.
    Kolesnikov, Alexander, V
    Zimin, Alexander P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [10] A general duality theorem for the Monge-Kantorovich transport problem
    Beiglboeck, Mathias
    Leonard, Christian
    Schachermayer, Walter
    STUDIA MATHEMATICA, 2012, 209 (02) : 151 - 167