Robust Object Categorization and Segmentation Motivated by Visual Contexts in the Human Visual System

被引:0
|
作者
Kim, Sungho [1 ]
机构
[1] Yeungnam Univ, Gyeongsanbuk Do 712749, South Korea
关键词
RECOGNITION; TEXTURE; MODEL;
D O I
10.1155/2011/101428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Categorizing visual elements is fundamentally important for autonomous mobile robots to get intelligence such as novel object learning and topological place recognition. The main difficulties of visual categorization are two folds: large internal and external variations caused by surface markings and background clutters, respectively. In this paper, we present a new object categorization method robust to surface markings and background clutters. Biologically motivated codebook selection method alleviates the surface marking problem. Introduction of visual context to the codebook approach can handle the background clutter issue. The visual contexts utilized are part-part context, part-whole context, and object-background context. The additional contribution is the proposition of a statistical optimization method, termed boosted MCMC, to incorporate the visual context in the codebook approach. In this framework, three kinds of contexts are incorporated. The object category label and figure-ground information are estimated to best describe input images. We experimentally validate the effectiveness and feasibility of object categorization in cluttered environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Robust object detection with interleaved categorization and segmentation
    Leibe, Bastian
    Leonardis, Ales
    Schiele, Bernt
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) : 259 - 289
  • [12] Robust Object Detection with Interleaved Categorization and Segmentation
    Bastian Leibe
    Aleš Leonardis
    Bernt Schiele
    International Journal of Computer Vision, 2008, 77 : 259 - 289
  • [13] Moving object segmentation based on human visual sensitivity
    Yoon, KJ
    Kweon, IS
    Kim, CY
    Seo, YS
    BIOLOGICALLY MOTIVATED COMPUTER VISION, PROCEEDING, 2000, 1811 : 62 - 72
  • [14] Object segmentation and visual neglect
    Driver, J
    BEHAVIOURAL BRAIN RESEARCH, 1995, 71 (1-2) : 135 - 146
  • [15] Emerging Object Representations in the Visual System Predict Reaction Times for Categorization
    Ritchie, J. Brendan
    Tovar, David A.
    Carlson, Thomas A.
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [16] Visual object categorization in infancy reflects the organization of the adult visual cortex
    Spriet, Celine
    Abassi, Etienne
    Hochmann, Jean-Remy
    Papeo, Liuba
    PERCEPTION, 2021, 50 (1_SUPPL) : 14 - 14
  • [17] Visual categorization and object representation in monkeys and humans
    Sigala, N
    Gabbiani, F
    Logothetis, NK
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2002, 14 (02) : 187 - 198
  • [18] A hierarchical matching framework for visual object categorization
    Jogan, Matjaž
    Elektrotehniski Vestnik/Electrotechnical Review, 2009, 76 (04): : 217 - 222
  • [19] A Hierarchical Matching Framework for Visual Object Categorization
    Jogan, Matjaz
    ELEKTROTEHNISKI VESTNIK, 2009, 76 (04): : 217 - 222
  • [20] Compact Correlation Coding for Visual Object Categorization
    Morioka, Nobuyuki
    Satoh, Shin'ichi
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1639 - 1646