A Piecewise Model for In Situ Raman Measurement of the Chlorinity of Deep-Sea High-Temperature Hydrothermal Fluids

被引:2
|
作者
Ge, Meng [1 ,2 ,3 ,4 ,5 ]
Li, Lianfu [1 ,2 ,3 ,4 ,5 ]
Zhang, Xin [1 ,2 ,3 ,4 ,5 ]
Luan, Zhendong [1 ,2 ,3 ,5 ]
Du, Zengfeng [1 ,2 ,5 ]
Xi, Shichuan [1 ,2 ,4 ,5 ]
Yan, Jun [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, CAS Key Lab Marine Geol & Environm, Qingdao, Peoples R China
[2] Chinese Acad Sci, Inst Oceanol, Ctr Deep Sea Res, Qingdao, Peoples R China
[3] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Geol, Qingdao, Peoples R China
[4] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
In situ; hydrothermal fluids; Raman spectroscopy; chlorinity; OH stretching band; MID-ATLANTIC RIDGE; WATER TEMPERATURE; VENT FLUIDS; SALINITY; INCLUSIONS; GEOCHEMISTRY; SEPARATION; NACL-H2O; SAMPLER; SPECTRA;
D O I
10.1177/0003702821999114
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The chlorinity of deep-sea hydrothermal fluids, representing one of the crucial deep-sea hydrothermal indicators, indicates the degree of deep phase separation of hydrothermal fluids and water/rock reactions. However, accurately measuring the chlorinity of high-temperature hydrothermal fluids is still a significant challenge. In this paper, a piecewise chlorinity model to measure the chlorinity of high-temperature hydrothermal fluids was developed based on the OH stretching band of water, exhibiting an accuracy of 96.20%. The peak position, peak area ratio, and F value were selected to establish the chlorinity piecewise calibration model within the temperature ranges of 0-50 celcius, 50-200 celcius, and 200-300 celcius. Compared with that of the chlorinity calibration model built based on a single parameter, the accuracy of this piecewise model increased by approximately 4.83-12.33%. This chlorinity calibration model was applied to determine the concentrations of Cl for high-temperature hydrothermal fluids in the Okinawa Trough hydrothermal field.
引用
收藏
页码:1178 / 1188
页数:11
相关论文
共 50 条
  • [31] Mineral phase analysis of deep-sea hydrothermal particulates by a Raman spectroscopy expert algorithm: Toward autonomous in situ experimentation and exploration
    Breier, J. A.
    German, C. R.
    White, S. N.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10
  • [32] In situ pH monitoring of deep-sea water in Southern China Sea using high temperature and pressure sensors
    Zhang, X. T.
    Zhang, R. H.
    Hu, S. M.
    Wang, Y.
    WATER-ROCK INTERACTION, VOLS 1 AND 2, PROCEEDINGS, 2007, : 555 - 558
  • [33] Mineral-microbe interactions in deep-sea hydrothermal systems: a challenge for Raman spectroscopy
    Breier, J. A.
    White, S. N.
    German, C. R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1922): : 3067 - 3086
  • [34] Deep-Sea Temperature Sensor In-Situ Readings from ROV
    Lagadec, Jean-Romain
    Prigent, Sebastien
    Lafontaine, Jean-Pierre
    SEA TECHNOLOGY, 2019, 60 (10) : 17 - 19
  • [35] In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent
    Masahiro Yamamoto
    Yoshihiro Takaki
    Hiroyuki Kashima
    Miwako Tsuda
    Akiko Tanizaki
    Ryuhei Nakamura
    Ken Takai
    The ISME Journal, 2023, 17 : 12 - 20
  • [36] In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent
    Yamamoto, Masahiro
    Takaki, Yoshihiro
    Kashima, Hiroyuki
    Tsuda, Miwako
    Tanizaki, Akiko
    Nakamura, Ryuhei
    Takai, Ken
    ISME JOURNAL, 2023, 17 (01): : 12 - 20
  • [37] On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration
    Waeles, M.
    Cotte, L.
    Pernet-Coudrier, B.
    Chavagnac, V.
    Cathalot, C.
    Leleu, T.
    Laes-Huon, A.
    Perhirin, A.
    Riso, R. D.
    Sarradin, P-M.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (09) : 4233 - 4240
  • [38] The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system
    Du, Zengfeng
    Zhang, Xin
    Xue, Boyang
    Luan, Zhendong
    Yan, Jun
    SOLID EARTH SCIENCES, 2020, 5 (03) : 153 - 168
  • [39] Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation
    Okamura, K
    Kimoto, H
    Saeki, K
    Ishibashi, J
    Obata, H
    Maruo, M
    Gamo, T
    Nakayama, E
    Nozaki, Y
    MARINE CHEMISTRY, 2001, 76 (1-2) : 17 - 26
  • [40] MEASUREMENT OF TRANSPORT-PROPERTIES OF HIGH-TEMPERATURE FLUIDS
    NAGASHIMA, A
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1991, 12 (01) : 1 - 15