Multi-task learning to rank for web search

被引:7
|
作者
Chang, Yi [1 ]
Bai, Jing [2 ]
Zhou, Ke [3 ]
Xue, Gui-Rong [4 ]
Zha, Hongyuan [3 ]
Zheng, Zhaohui [1 ]
机构
[1] Yahoo Labs, Sunnyvale, CA 94089 USA
[2] Microsoft Bing, Redmond, WA USA
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
关键词
Multi-task learning; Non-parametric common structure; Learning to rank; Convergence analysis;
D O I
10.1016/j.patrec.2011.09.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Both the quality and quantity of training data have significant impact on the accuracy of rank functions in web search. With the global search needs, a commercial search engine is required to expand its well tailored service to small countries as well. Due to heterogeneous intrinsic of query intents and search results on different domains (i.e., for different languages and regions), it is difficult for a generic ranking function to satisfy all type of queries. Instead, each domain should use a specific well tailored ranking function. In order to train each ranking function for each domain with a scalable strategy, it is critical to leverage existing training data to enhance the ranking functions of those domains without sufficient training data. In this paper, we present a boosting framework for learning to rank in the multi-task learning context to attack this problem. In particular. we propose to learn non-parametric common structures adaptively from multiple tasks in a stage-wise way. An algorithm is developed to iteratively discover super-features that are effective for all the tasks. The estimation of the regression function for each task is then learned as linear combination of those super-features. We evaluate the accuracy of multi-task learning methods for web search ranking using data from multiple domains from a commercial search engine. Our results demonstrate that multi-task learning methods bring significant relevance improvements over existing baseline method. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 181
页数:9
相关论文
共 50 条
  • [31] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [32] Cascaded Multi-task Adaptive Learning Based on Neural Architecture Search
    Gao, Yingying
    Zhang, Shilei
    Cui, Zihao
    Deng, Chao
    Feng, Junlan
    INTERSPEECH 2023, 2023, : 246 - 250
  • [33] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [34] Boosted multi-task learning
    Olivier Chapelle
    Pannagadatta Shivaswamy
    Srinivas Vadrevu
    Kilian Weinberger
    Ya Zhang
    Belle Tseng
    Machine Learning, 2011, 85 : 149 - 173
  • [35] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [36] Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering
    Shen, Jiaming
    Karimzadehgan, Maryam
    Bendersky, Michael
    Qin, Zhen
    Metzler, Donald
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 2127 - 2135
  • [37] On Partial Multi-Task Learning
    He, Yi
    Wu, Baijun
    Wu, Di
    Wu, Xindong
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1174 - 1181
  • [38] Pareto Multi-Task Learning
    Lin, Xi
    Zhen, Hui-Ling
    Li, Zhenhua
    Zhang, Qingfu
    Kwong, Sam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Federated Multi-Task Learning
    Smith, Virginia
    Chiang, Chao-Kai
    Sanjabi, Maziar
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [40] Asynchronous Multi-Task Learning
    Baytas, Inci M.
    Yan, Ming
    Jain, Anil K.
    Zhou, Jiayu
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 11 - 20