Geodesic flows on path spaces

被引:1
|
作者
Xiang, KN
Liu, Y [1 ]
机构
[1] Beijing Univ, Dept Stat & Probabil, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2001年 / 44卷 / 04期
基金
中国博士后科学基金;
关键词
Wiener measure; quasi-invariance; geodesic flow;
D O I
10.1007/BF02881883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the path space over a compact Riemannian manifold, the global existence and the global uniqueness of the quasi-invariant geodesic flows with respect to a negative Markov connection are obtained in this paper. The results answer affirmatively a left problem of Li.
引用
收藏
页码:467 / 473
页数:7
相关论文
共 50 条
  • [31] GEODESIC FLOWS MODELLED BY EXPANSIVE FLOWS
    Gelfert, Katrin
    Ruggiero, Rafael O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 61 - 95
  • [32] Inheriting geodesic flows
    Lortan, DB
    Maharaj, SD
    Dadhich, NK
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (06): : 715 - 722
  • [33] Inheriting geodesic flows
    D B Lortan
    S D Maharaj
    N K Dadhich
    Pramana, 2001, 56 : 715 - 722
  • [34] Templates for geodesic flows
    Pinsky, Tali
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 211 - 235
  • [35] Equicontinuous geodesic flows
    Pries, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1951 - 1963
  • [36] GEODESIC FLOWS ARE BERNOULLIAN
    ORNSTEIN, D
    WEISS, B
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (02) : 184 - 198
  • [37] Lorentzian geodesic flows
    Larsen, JC
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1996, 43 (01) : 119 - 170
  • [38] Geodesic Flows in Cosmology
    Bergshoeff, E.
    Chemissany, W.
    Ploegh, A.
    2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [39] Geodesic Information Flows
    Cardoso, M. Jorge
    Wolz, Robin
    Modat, Marc
    Fox, Nick C.
    Rueckert, Daniel
    Ourselin, Sebastien
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 262 - 270
  • [40] Geodesic complexity for non-geodesic spaces
    Davis, Donald M.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):