Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel cell applications

被引:37
|
作者
Dai, Junming [1 ,3 ]
Zhang, Yu [1 ,3 ]
Wang, Gang [2 ]
Zhuang, Yongbing [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[2] Henan Univ Technol, Sch Chem & Chem Engn, Zhengzhou 450001, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
proton exchange membranes; high-temperature fuel cells; structure-performance relationship; proton conductivity; ACID-DOPED POLYBENZIMIDAZOLE; POLY(ARYLENE ETHER KETONE); SOLUBLE SULFONATED POLYBENZOTHIAZOLES; CROSS-LINKED POLYBENZIMIDAZOLE; ELECTROLYTE MEMBRANES; COMPOSITE MEMBRANES; PHOSPHORIC-ACID; LOW-HUMIDITY; POLYIMIDE COPOLYMERS; POROUS MEMBRANES;
D O I
10.1007/s40843-021-1889-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-temperature proton exchange membrane (HT-PEM) fuel cells offer more advantages than low-temperature PEM fuel cells. The ideal characteristics of HT-PEMs are high conductivities, low-humidity operation conditions, adequate mechanical properties, and competitive costs. Various molecular moieties, such as benzimidazole, benzo-thiazole, imide, and ether ether ketone, have been introduced to polymer chain backbones to satisfy the application requirements for HT-PEMs. The most common sulfonated polymers based on the main chain backbones have been employed to improve the rties. Side group/chain engineering, includ crosslinking, has been widely applied to HT-PEMs to further improve their proton conductivity, thermal stability, and mechanical properties. Currently, phosphoric acid-doped polybenzimidazole is the most successful polymer material for application in HT-PEMs. The compositing/blending modification methods of polymers are effective in obtaining high PA-doping levels and superior mechanical properties. In this review, the current progress of various membrane materials used for HT-PEMs is summarized. The synthesis and performance characteristics of polymers containing specific moieties in the chain backbones applied to HT-PEMs are discussed systemically. Various modification approaches and their deficiencies associated with HT-PEMs are analyzed and clarified. Prospects and future challenges are also presented.
引用
收藏
页码:273 / 297
页数:25
相关论文
共 50 条
  • [21] High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells
    Plackett, David
    Siu, Ana
    Li, Qingfeng
    Pan, Chao
    Jensen, Jens Oluf
    Nielsen, Soren Faester
    Permyakova, Anastasia A.
    Bjerrum, Niels J.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 383 (1-2) : 78 - 87
  • [22] Thermal Stability and Ionic Conductivity of High-Temperature Proton Conducting Ionic Liquid Polymer Composite Electrolyte Membranes for Fuel Cell Applications
    Sambasivarao, Somisetti V.
    POLYMER COMPOSITES FOR ENERGY HARVESTING, CONVERSION, AND STORAGE, 2014, 1161 : 111 - 126
  • [23] Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells
    Jung, Guo-Bin
    Weng, Fang-Bor
    Su, Ay
    Wang, Jiun-Sheng
    Yu, T. Leon
    Lin, Hsiu-Li
    Yang, Tein-Fu
    Chan, Shih-Hung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) : 2413 - 2417
  • [24] Guanidinium/Hydroxyl-Functionalized Polybenzimidazole for High-Temperature Proton Exchange Membrane Fuel Cell Applications
    Ji, Jiayuan
    Han, Yuyang
    Xu, Fei
    Chu, Fuqiang
    Li, Yanting
    Lin, Bencai
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (22) : 11754 - 11761
  • [25] High-temperature proton-exchange membranes based on polymer-acid complexes
    Leikin A.Yu.
    Bulycheva E.G.
    Rusanov A.L.
    Likhachev D.Yu.
    Polym. Sci. Ser. B, 2006, 3 (144-151): : 144 - 151
  • [26] Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems
    Ye, Lin
    Jiao, Kui
    Du, Qing
    Yin, Yan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 917 - 929
  • [27] Advancements in proton exchange membranes for high-performance high-temperature proton exchange membrane fuel cells (HT-PEMFC)
    Li, Guoqiang
    Kujawski, Wojciech
    Rynkowska, Edyta
    REVIEWS IN CHEMICAL ENGINEERING, 2022, 38 (03) : 327 - 346
  • [28] Proton exchange membranes based on sulfonimide for fuel cell applications
    Rahman, K
    Aiba, G
    Susan, A
    Watanabe, M
    ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 633 - 638
  • [29] Functional Poly(p-terphenyl-co-4-acetylpyridine) Membranes for High-Temperature Proton Exchange Membrane Fuel-Cell Applications
    Luan, Tian
    Jin, Yaping
    Wu, Danni
    Wei, Wei
    Yang, Jingshuai
    Wang, Jin
    ACS APPLIED POLYMER MATERIALS, 2025, 7 (05): : 3224 - 3232
  • [30] Recent advances in proton exchange membranes for fuel cell applications
    Zhang, Liwei
    Chae, So-Ryong
    Hendren, Zachary
    Park, Jin-Soo
    Wiesner, Mark R.
    CHEMICAL ENGINEERING JOURNAL, 2012, 204 : 87 - 97