Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - An overview

被引:81
|
作者
Ling, Tung-Chai [1 ,2 ,3 ]
Kaliyavaradhan, Senthil Kumar [1 ]
Poon, Chi Sun [2 ]
机构
[1] Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[3] Key Lab Green & Adv Civil Engn Mat & Applicat Tec, Changsha, Hunan, Peoples R China
关键词
Controlled low-strength material (CLSM); Trench backfilling; Waste materials; Specification; Flowability; Excavatability; INCINERATION BOTTOM ASH; INDUSTRIAL BY-PRODUCTS; FLY-ASH; ENGINEERING PROPERTIES; COMPRESSIVE STRENGTH; LIGHTWEIGHT AGGREGATE; METALLIC MATERIALS; BENEFICIAL REUSE; FLOWABLE SLURRY; PASTE BACKFILL;
D O I
10.1016/j.conbuildmat.2017.10.050
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Controlled low-strength material (CLSM) is known as a self-leveling and self-compacting cementitious backfill material used for backfilling. The aim of this paper is to give an overview of the research development and practical application of CLSM for trench backfilling. Widespread application of CLSM is found around the world including in the United States of America (USA) as well as in other developed and developing countries. The main specifications and guidelines used in the USA and referenced by most of the other countries are highlighted in this paper. In addition, long-term site performance and technical limitations to be considered before application of CLSM are also discussed. Based on 115 globally sourced literature articles, it is suggested that the materials used for the production of CLSM are varied from country to country which in turn could have a significant influence on the resulting properties and its application in the field. It is also demonstrated that use of high volume by-products or/and waste materials is an effective way to control the low strength requirement of CLSM and minimize the environmental concerns related to the disposal of these waste materials. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:535 / 548
页数:14
相关论文
共 50 条
  • [31] Developing alkali-activated controlled low-strength material (CLSM) using urban waste glass and red mud for sustainable construction
    Xiao, Rui
    Nie, Qingke
    Dai, Xiaodi
    Wan, Zhi
    Zhong, Jingtao
    Ma, Yuetan
    Huang, Baoshan
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [32] Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability
    Senthil Kumar Kaliyavaradhan
    Tung-Chai Ling
    Ming-Zhi Guo
    Environmental Science and Pollution Research, 2022, 29 : 16799 - 16816
  • [33] Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability
    Kaliyavaradhan, Senthil Kumar
    Ling, Tung-Chai
    Guo, Ming-Zhi
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (12) : 16799 - 16816
  • [34] Standard test method for flow consistency of controlled low strength material (CLSM)
    INNOVATIONS IN CONTROLLED LOW-STRENGTH MATERIAL (FLOWABLE FILL), 2004, 1459 : 157 - 159
  • [35] Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products
    Lee, N. K.
    Kim, H. K.
    Park, I. S.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 738 - 746
  • [36] Engineering properties of controlled low strength material (CLSM) incorporating red mud
    Do T.M.
    Kim Y.-S.
    International Journal of Geo-Engineering, 7 (1)
  • [37] An experimental study on controlled low strength material (CLSM) for utilization as sustainable backfill
    Dalal, Parishi H.
    Patil, Mahi
    Dave, Trudeep N.
    Iyer, Kannan K. R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 65 : 1178 - 1185
  • [38] Controlled low-strength material using fly ash and AMD sludge
    Gabr, MA
    Bowders, JJ
    JOURNAL OF HAZARDOUS MATERIALS, 2000, 76 (2-3) : 251 - 263
  • [39] Engineering properties of air-modified controlled low-strength material
    Hoopes, RJ
    DESIGN AND APPLICATION OF CONTROLLED LOW-STRENGTH MATERIALS (FLOWABLE FILL), 1998, 1331 : 87 - 101
  • [40] Specifications and use of controlled low-strength material by state transportation agencies
    Riggs, EH
    Keck, RH
    DESIGN AND APPLICATION OF CONTROLLED LOW-STRENGTH MATERIALS (FLOWABLE FILL), 1998, 1331 : 296 - 305