Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning

被引:5
|
作者
Gecgel, Ozhan [1 ]
Ramanujam, Ashwin [1 ]
Botte, Gerardine G. [1 ]
机构
[1] Texas Tech Univ, Dept Chem Engn, Chem & Electrochem Technol & Innovat CETI Lab, Lubbock, TX 79409 USA
来源
VIRUSES-BASEL | 2022年 / 14卷 / 09期
关键词
COVID-19; diagnosis; COVID deep learning; electrochemical biosensor; electrochemical SARS-CoV-2 detection; differential diagnosis;
D O I
10.3390/v14091930
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
COVID-19 has been in the headlines for the past two years. Diagnosing this infection with minimal false rates is still an issue even with the advent of multiple rapid antigen tests. Enormous data are being collected every day that could provide insight into reducing the false diagnosis. Machine learning (ML) and deep learning (DL) could be the way forward to process these data and reduce the false diagnosis rates. In this study, ML and DL approaches have been applied to the data set collected using an ultra-fast COVID-19 diagnostic sensor (UFC-19). The ability of ML and DL to specifically detect SARS-CoV-2 signals against SARS-CoV, MERS-CoV, Human CoV, and Influenza was investigated. UFC-19 is an electrochemical sensor that was used to test these virus samples and the obtained current response dataset was used to diagnose SARS-CoV-2 using different algorithms. Our results indicate that the convolution neural networks algorithm could diagnose SARS-CoV-2 samples with a sensitivity of 96.15%, specificity of 98.17%, and accuracy of 97.20%. Combining this DL model with the existing UFC-19 could selectively identify SARS-CoV-2 presence within two minutes.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor
    Mojsoska, Biljana
    Larsen, Sylvester
    Olsen, Dorte Aalund
    Madsen, Jonna Skov
    Brandslund, Ivan
    Alatraktchi, Fatima AlZahra'a
    SENSORS, 2021, 21 (02) : 1 - 11
  • [2] Electrochemical Biosensors for SARS-CoV-2 Detection
    Andrianova M.S.
    Panova O.S.
    Titov A.A.
    Komarova N.V.
    Kuznetsov A.E.
    Moscow University Chemistry Bulletin, 2023, 78 (5) : 231 - 254
  • [3] Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning
    Alejandro Lopez-Rincon
    Alberto Tonda
    Lucero Mendoza-Maldonado
    Daphne G. J. C. Mulders
    Richard Molenkamp
    Carmina A. Perez-Romero
    Eric Claassen
    Johan Garssen
    Aletta D. Kraneveld
    Scientific Reports, 11
  • [4] Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning
    Lopez-Rincon, Alejandro
    Tonda, Alberto
    Mendoza-Maldonado, Lucero
    Mulders, Daphne G. J. C.
    Molenkamp, Richard
    Perez-Romero, Carmina A.
    Claassen, Eric
    Garssen, Johan
    Kraneveld, Aletta D.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Electrochemical genosensor for the specific detection of SARS-CoV-2
    Cajigas, Sebastian
    Alzate, Daniel
    Fernandez, Maritza
    Muskus, Carlos
    Orozco, Jahir
    TALANTA, 2022, 245
  • [6] Electrochemical sensors for the detection of SARS-CoV-2 virus
    Kumar, Neeraj
    Shetti, Nagaraj P.
    Jagannath, Somanath
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [7] Rapid electrochemical detection of coronavirus SARS-CoV-2
    Chaibun, Thanyarat
    Puenpa, Jiratchaya
    Ngamdee, Tatchanun
    Boonapatcharoen, Nimaradee
    Athamanolap, Pornpat
    O'Mullane, Anthony Peter
    Vongpunsawad, Sompong
    Poovorawan, Yong
    Lee, Su Yin
    Lertanantawong, Benchaporn
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Rapid electrochemical detection of coronavirus SARS-CoV-2
    Thanyarat Chaibun
    Jiratchaya Puenpa
    Tatchanun Ngamdee
    Nimaradee Boonapatcharoen
    Pornpat Athamanolap
    Anthony Peter O’Mullane
    Sompong Vongpunsawad
    Yong Poovorawan
    Su Yin Lee
    Benchaporn Lertanantawong
    Nature Communications, 12
  • [9] SARS-CoV-2 Detection Using Chest X-Ray Images with Deep Learning Methods
    Aydogan, Ediz
    Genc, Abdullah
    Bilgin, Gokhan
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [10] Gold-binding peptide as a selective layer for electrochemical detection of SARS-CoV-2 antibodies
    Braz, Beatriz A.
    Hospinal-Santiani, Manuel
    Martins, Gustavo
    Gogola, Jeferson L.
    Valenga, Marcia G. P.
    Beirao, Breno C. B.
    Bergamini, Marcio F.
    Marcolino-Junior, Luiz H.
    Thomaz-Soccol, Vanete
    Soccol, Carlos R.
    TALANTA, 2023, 257