Numerical study on stress control of silicon ingot for photovoltaic applications

被引:2
|
作者
Lee, Jun-Kyu [1 ]
Ahn, Young-Soo [1 ]
Yeo, Jeong-Gu [1 ]
Kang, Gi-Hwan [2 ]
Lee, Jin-Seok [1 ]
机构
[1] Korea Inst Energy Res, Energy Convers & Storage Mat Lab, Daejeon 305343, South Korea
[2] Korea Inst Energy Res, Photovolta Lab, Daejeon 305343, South Korea
关键词
Computer simulation; Directional solidification; Growth from melt; Stresses; Seed crystals; Purification; METALLURGICAL GRADE SILICON; DIRECTIONAL SOLIDIFICATION; MULTICRYSTALLINE SILICON; CRYSTALLINE SILICON; SOLAR-CELL; POLYCRYSTALLINE SILICON; MOLTEN SILICON; GROWTH; PURIFICATION; TECHNOLOGY;
D O I
10.1016/j.jcrysgro.2021.126239
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
When continuous silicon ingot casting is performed using directional solidification-a metallurgical refining method for producing high-purity silicon ingots-the thermal stress and microstructure inside the ingots must be monitored for ensuring the desired yield and purity. This study determined the temperature gradient and thermal stress during silicon ingot casting by applying various controlled parameters to the process simulation. Our results indicate that the temperature gradient influences the thermal stress generated during casting; reducing the temperature gradient can help reduce the thermal stress. The ingot exhibited the lowest thermal stress at an electron beam (E-beam) power of 6 kW, an ingot growth rate of 0.02 mm/min, and a molten silicon level of -10 mm. Quasi-single crystalline silicon ingot was produced via crystal growth simulation under thermal stress-minimizing conditions with single-crystalline seed. The quasi-single crystalline silicon ingot maintained the [001] grain orientation and the purity increased from 2N to 7N6.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Growth of silicon sheets for photovoltaic applications
    Bell, RO
    Kalejs, JP
    JOURNAL OF MATERIALS RESEARCH, 1998, 13 (10) : 2732 - 2739
  • [22] Quantum effects in silicon for photovoltaic applications
    Ingenhoven, P.
    Anopchenko, A.
    Tengattini, A.
    Gandolfi, D.
    Sgrignuoli, F.
    Pucker, G.
    Jestin, Y.
    Pavesi, L.
    Balboni, R.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (06): : 1071 - 1075
  • [23] Hydrogenated microcrystalline silicon for photovoltaic applications
    Wyrsch, N.
    Torres, P.
    Goerlitzer, M.
    Vallat, E.
    Kroll, U.
    Shah, A.
    Poruba, A.
    Vanecek, M.
    Solid State Phenomena, 1999, 67 : 89 - 100
  • [24] Silicon Clathrate Films for Photovoltaic Applications
    Fix, Thomas
    Vollondat, Romain
    Ameur, Arechkik
    Roques, Stephane
    Rehspringer, Jean-Luc
    Chevalier, Celine
    Muller, Dominique
    Slaoui, Abdelilah
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (28): : 14972 - 14977
  • [25] Thermal spray silicon for photovoltaic applications
    Jackson, Damon D.
    Sereda, Mike
    Patterson, Reed
    Giocondi, Jennifer
    Advanced Materials and Processes, 2010, 168 (05): : 51 - 52
  • [26] Thermal Spray Silicon for Photovoltaic Applications
    Jackson, Damon D.
    Sereda, Mike
    Patterson, Reed
    Giocondi, Jennifer
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (05): : 51 - 52
  • [27] Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot
    Li, Jiadan
    Chen, Yifeng
    Hong, Ruijiang
    SOLAR ENERGY, 2016, 139 : 108 - 115
  • [28] Numerical studies on a type of mechanical stirring in directional solidification method of multicrystalline silicon for photovoltaic applications
    Dumitrica, S.
    Vizman, D.
    Garandet, J. -P
    Popescu, A.
    JOURNAL OF CRYSTAL GROWTH, 2012, 360 : 76 - 80
  • [29] Black silicon: Engineering an intermediate band in silicon for photovoltaic applications
    Mazur, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [30] Numerical simulations for silicon crystallization processes - examples from ingot and ribbon casting
    Steinbach, I
    Apel, M
    Rettelbach, T
    Franke, D
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 72 (1-4) : 59 - 68