On stability in the thermoelastostatics of dipolar bodies

被引:1
|
作者
Marin, Marin [1 ]
Ochsner, Andreas [2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov, Romania
[2] Esslingen Univ Appl Sci, Fac Mech Engn, D-73728 Esslingen, Germany
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Bucharest, Romania
关键词
CONTINUOUS DEPENDENCE;
D O I
10.1007/s00707-018-2237-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Our study is concerned with the initial boundary value problem in the context of the thermoelastostatics of dipolar bodies. We will derive a result which describes the exponential spatial decay of solutions of this problem. We will also find a superior limit for the amplitude, which is dependent on the initial and boundary conditions.
引用
收藏
页码:4267 / 4277
页数:11
相关论文
共 50 条
  • [11] A GENERAL THEORY OF INSTABILITY FOR DIPOLAR THERMOELASTIC BODIES
    Webb, G. R.
    Bass, B. R.
    MECHANICS RESEARCH COMMUNICATIONS, 1975, 2 (01) : 1 - 6
  • [12] The Influence of Voids in the Vibrations of Bodies with Dipolar Structure
    Marin, Marin
    Vlase, Sorin
    Chirila, Adina
    SYMMETRY-BASEL, 2021, 13 (10):
  • [13] On weak solutions in elasticity of dipolar bodies with voids
    Marin, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 82 (1-2) : 291 - 297
  • [14] Some Estimates on Vibrations in Thermoelasticity of Dipolar Bodies
    Marin, M.
    JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (01) : 33 - 47
  • [15] Propagation of a straight crack in dipolar elastic bodies
    Marin, M.
    Oechsner, A.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2018, 30 (04) : 775 - 782
  • [16] STABILITY OF DIPOLAR FLUID MEMBRANES
    SIMONS, BD
    JOURNAL DE PHYSIQUE II, 1992, 2 (05): : 1141 - 1148
  • [17] STABILITY OF A LINEAR DIPOLAR FLUID
    HILLS, RN
    ACTA MECHANICA, 1973, 17 (3-4) : 255 - 261
  • [18] ON THE CONTINUOUS DEPENDENCE OF SOLUTIONS ON DATA IN FINITE THERMOELASTOSTATICS
    ARON, M
    CRAINE, RE
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1986, 24 (03) : 387 - 393
  • [19] A polynomial way to control the decay of solutions for dipolar bodies
    Marin, Marin
    Oechsner, Andreas
    Radulescu, Vicentiu
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (01) : 331 - 340
  • [20] On vibrations in Green-Naghdi thermoelasticity of dipolar bodies
    Marin, M.
    Chirila, A.
    Codarcea, L.
    Vlase, S.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (01): : 125 - 140