On stability in the thermoelastostatics of dipolar bodies

被引:1
|
作者
Marin, Marin [1 ]
Ochsner, Andreas [2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov, Romania
[2] Esslingen Univ Appl Sci, Fac Mech Engn, D-73728 Esslingen, Germany
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Bucharest, Romania
关键词
CONTINUOUS DEPENDENCE;
D O I
10.1007/s00707-018-2237-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Our study is concerned with the initial boundary value problem in the context of the thermoelastostatics of dipolar bodies. We will derive a result which describes the exponential spatial decay of solutions of this problem. We will also find a superior limit for the amplitude, which is dependent on the initial and boundary conditions.
引用
收藏
页码:4267 / 4277
页数:11
相关论文
共 50 条
  • [1] On stability in the thermoelastostatics of dipolar bodies
    Marin Marin
    Andreas Öchsner
    Dumitru Baleanu
    Acta Mechanica, 2018, 229 : 4267 - 4277
  • [2] Existence and stability results for thermoelastic dipolar bodies with double porosity
    M. Marin
    S. Nicaise
    Continuum Mechanics and Thermodynamics, 2016, 28 : 1645 - 1657
  • [3] Existence and stability results for thermoelastic dipolar bodies with double porosity
    Marin, M.
    Nicaise, S.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2016, 28 (06) : 1645 - 1657
  • [4] An evolutionary equation in thermoelasticity of dipolar bodies
    Marin, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1391 - 1399
  • [5] Cesaro means in thermoelasticity of dipolar bodies
    Marin, M
    ACTA MECHANICA, 1997, 122 (1-4) : 155 - 168
  • [6] Cesaro means in thermoelasticity of dipolar bodies
    M. Marin
    Acta Mechanica, 1997, 122 : 155 - 168
  • [7] Propagation of a straight crack in dipolar elastic bodies
    M. Marin
    A. Öchsner
    Continuum Mechanics and Thermodynamics, 2018, 30 : 775 - 782
  • [8] Weak solutions in Elasticity of dipolar bodies with stretch
    Marin, Marin
    Stan, Gabriel
    CARPATHIAN JOURNAL OF MATHEMATICS, 2013, 29 (01) : 33 - 40
  • [9] INTERNAL STATE VARIABLES IN DIPOLAR THERMOELASTIC BODIES
    Marin, M.
    Mahmoud, S. R.
    Stan, G.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (01): : 15 - 26
  • [10] The dipolar field of rotating bodies in two dimensions
    Smith, Stefan G. Llewellyn
    Michelin, Sebastien
    Crowdy, D. G.
    JOURNAL OF FLUID MECHANICS, 2008, 607 : 109 - 118