On the advection-diffusion equation with rough coefficients: Weak solutions and vanishing viscosity

被引:9
|
作者
Bonicatto, Paolo [1 ]
Ciampa, Gennaro [2 ,3 ]
Crippa, Gianluca [4 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7HP, England
[2] Univ Milan, Dipartimento Matemat Federigo Enr, Via Cesare Saldini 50, I-20133 Milan, Italy
[3] Basque Ctr Appl Math, BCAM, Mazarredo 14, E-48009 Bilbao, Basque, Spain
[4] Univ Basel, Dept Math Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Transport; continuity equation; Advection-diffusion equation; Vanishing viscosity; Regular; Stochastic Lagrangian flow; Uniqueness; Anomalous dissipation; DIFFERENTIAL-EQUATIONS; RENORMALIZED SOLUTIONS; VECTOR-FIELDS; UNIQUENESS; CONTINUITY; FLOWS; BV;
D O I
10.1016/j.matpur.2022.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the vanishing viscosity scheme for the transport/continuity equation partial differential tu +div(ub) = 0 drifted by a divergence-free vector field b. Under general Sobolev assumptions on b, we show the convergence of such scheme to the unique Lagrangian solution of the transport equation. Our proof is based on the use of stochastic flows and yields quantitative rates of convergence. This offers a completely general selection criterion for the transport equation (even beyond the distributional regime) which compensates the wild non-uniqueness phenomenon for solutions with low integrability arising from convex integration constructions, as shown in recent works [8,28-30], and rules out the possibility of anomalous dissipation.(c) 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:204 / 224
页数:21
相关论文
共 50 条
  • [31] DOMAIN DECOMPOSITION METHOD FOR THE ADVECTION-DIFFUSION EQUATION
    CHARTON, P
    NATAF, F
    ROGIER, F
    RECHERCHE AEROSPATIALE, 1992, (04): : 73 - 78
  • [32] Climate modeling with neural advection-diffusion equation
    Choi, Hwangyong
    Choi, Jeongwhan
    Hwang, Jeehyun
    Lee, Kookjin
    Lee, Dongeun
    Park, Noseong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (06) : 2403 - 2427
  • [33] Multiscale computation method for an advection-diffusion equation
    Su, Fang
    Xu, Zhan
    Cui, Jun-Zhi
    Du, Xin-Peng
    Jiang, Hao
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7369 - 7374
  • [34] Scaling laws and convergence for the advection-diffusion equation
    Gaudron, G
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (03): : 649 - 663
  • [35] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [36] A bound on scalar variance for the advection-diffusion equation
    Plasting, SC
    Young, WR
    JOURNAL OF FLUID MECHANICS, 2006, 552 : 289 - 298
  • [37] Analytical solutions of conformable advection-diffusion equation for contaminant migration with isothermal adsorption
    Yang, Shuai
    Chen, Xiang
    Ou, Lin
    Cao, Yuan
    Zhou, Hongwei
    APPLIED MATHEMATICS LETTERS, 2020, 105 (105)
  • [38] PARABOLIZED ALGORITHM FOR THE STEADY ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (13): : 869 - 872
  • [39] Identifying Space-Dependent Coefficients and the Order of Fractionality in Fractional Advection-Diffusion Equation
    Maryshev, Boris
    Cartalade, Alain
    Latrille, Christelle
    Neel, Marie-Christine
    TRANSPORT IN POROUS MEDIA, 2017, 116 (01) : 53 - 71
  • [40] Studying the Effect of Two Analytical Solutions of Advection-Diffusion Equation on Experimental Data
    Essa, Khaled S. M.
    Taha, Hanaa Mohamed Ahmed
    PURE AND APPLIED GEOPHYSICS, 2023, 180 (06) : 2407 - 2418