Robust Recovery of Structured Sparse Signals With Uncertain Sensing Matrix: A Turbo-VBI Approach

被引:20
|
作者
Liu, An [1 ]
Liu, Guanying [1 ]
Lian, Lixiang [2 ]
Lau, Vincent K. N. [3 ]
Zhao, Min-Jian [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept ECE, Hong Kong, Peoples R China
[3] HKUST Shenzhen Res Inst, Shenzhen 518057, Peoples R China
关键词
Variational Bayesian inference (VBI); structured sparse signal recovery; uncertain sensing matrix; MIMO CHANNEL ESTIMATION;
D O I
10.1109/TWC.2020.2971193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In many applications in wireless communications, we need to recover a structured sparse signal from a linear measurement model with uncertain sensing matrix. There are two challenges of designing an algorithm framework for this problem. How to choose a flexible yet tractable sparse prior to capture different structured sparsities in specific applications? How to handle a sensing matrix with uncertain parameters and possibly correlated entries? As will be explained in the introduction, existing common methods in compressive sensing (CS), such as approximate message passing (AMP) and variational Bayesian inference (VBI), may not work well. To better address this problem, we propose a novel Turbo-VBI algorithm framework, in which a three-layer hierarchical structured (3LHS) sparse prior model is proposed to capture various structured sparsities that may occur in practice. By combining the message passing and VBI approaches via the turbo framework, the proposed Turbo-VBI algorithm is able to fully exploit the structured sparsity (as captured by the 3LHS sparse prior) for robust recovery of structured sparse signals under an uncertain sensing matrix. Finally, we apply the Turbo-VBI framework to solve two application problems in wireless communications and demonstrate its significant gain over the state-of-art CS algorithms.
引用
收藏
页码:3185 / 3198
页数:14
相关论文
共 50 条
  • [21] Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets
    Castro, Rui M.
    Tanczos, Ervin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (03) : 1535 - 1554
  • [22] Matrix games with uncertain entries: A robust approach
    Hlavaty, Robert
    Brozova, Helena
    MATHEMATICAL METHODS IN ECONOMICS (MME 2018), 2018, : 139 - 144
  • [23] AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE
    Ramirez, Ana B.
    Carrillo, Rafael E.
    Arce, Gonzalo
    Barner, Kenneth E.
    Sadler, Brian
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2859 - 2863
  • [24] New Bernoulli And Gaussian Sensing Matrices For Cluster Structured Sparse Signals
    Nouasria, Hamid
    Et-tolba, Mohamed
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [25] Structured Bayesian Federated Learning for Green AI: A Decentralized Model Compression Using Turbo-VBI-Based Approach
    Xia, Chengyu
    Tsang, Danny H. K.
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (07) : 12783 - 12798
  • [26] Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise
    Qiu, Chenlu
    Vaswani, Namrata
    Lois, Brian
    Hogben, Leslie
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 5007 - 5039
  • [27] RECURSIVE ROBUST PCA OR RECURSIVE SPARSE RECOVERY IN LARGE BUT STRUCTURED NOISE
    Qiu, Chenlu
    Vaswani, Namrata
    Hogben, Leslie
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5954 - 5958
  • [28] Accelerated Structured Alternating Projections for Robust Spectrally Sparse Signal Recovery
    Cai, HanQin
    Cai, Jian-Feng
    Wang, Tianming
    Yin, Guojian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 809 - 821
  • [29] Joint Sparse Recovery Method for Compressed Sensing With Structured Dictionary Mismatches
    Tan, Zhao
    Yang, Peng
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (19) : 4997 - 5008
  • [30] Robust signal recovery algorithm for structured perturbation compressive sensing
    Wang, Youhua
    Zhang, Jianqiu
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2016, 27 (02) : 319 - 325