Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using a One-Dimensional Convolutional Neural Network

被引:44
|
作者
Teng, Shuai [1 ]
Chen, Gongfa [1 ]
Liu, Zongchao [1 ]
Cheng, Li [2 ]
Sun, Xiaoli [1 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Hong Kong 999077, Peoples R China
[3] Guangzhou Municipal Engn Testing Co Ltd, Guangzhou 510520, Peoples R China
关键词
structural damage detection; decision-level fusion; 1-D convolutional neural network; vibration experiments; acceleration signals; bridge model; MODAL STRAIN-ENERGY; KALMAN FILTER; IDENTIFICATION; CURVATURE;
D O I
10.3390/s21123950
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a novel approach to substantially improve the detection accuracy of structural damage via a one-dimensional convolutional neural network (1-D CNN) and a decision-level fusion strategy. As structural damage usually induces changes in the dynamic responses of a structure, a CNN can effectively extract structural damage information from the vibration signals and classify them into the corresponding damage categories. However, it is difficult to build a large-scale sensor system in practical engineering; the collected vibration signals are usually non-synchronous and contain incomplete structure information, resulting in some evident errors in the decision stage of the CNN. In this study, the acceleration signals of multiple acquisition points were obtained, and the signals of each acquisition point were used to train a 1-D CNN, and their performances were evaluated by using the corresponding testing samples. Subsequently, the prediction results of all CNNs were fused (decision-level fusion) to obtain the integrated detection results. This method was validated using both numerical and experimental models and compared with a control experiment (data-level fusion) in which all the acceleration signals were used to train a CNN. The results confirmed that: by fusing the prediction results of multiple CNN models, the detection accuracy was significantly improved; for the numerical and experimental models, the detection accuracy was 10% and 16-30%, respectively, higher than that of the control experiment. It was demonstrated that: training a CNN using the acceleration signals of each acquisition point and making its own decision (the CNN output) and then fusing these decisions could effectively improve the accuracy of damage detection of the CNN.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Aeroengine Bearing Fault Diagnosis Based on Convolutional Neural Network for Multi-sensor Information Fusion
    Yang J.
    Wan A.
    Wang J.
    Shan T.
    Miao X.
    Li K.
    Zuo Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (13): : 4933 - 4941
  • [22] Damage localization and characterization using one-dimensional convolutional neural network and a sparse network of transducers
    Sattarifar, Afshin
    Nestorovi, Tamara
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [23] Quality Detection of Laser Welding Based on One-Dimensional Convolutional Neural Network
    Zhou, Xundao
    Lu, Song
    Xia, Fengbin
    Huang, Linyi
    Chen, Chaoying
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1510 - 1515
  • [24] Multi-sensor signal fusion-based modulation classification by using wireless sensor networks
    Zhang, Yan
    Ansari, Nirwan
    Su, Wei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2015, 15 (12): : 1621 - 1632
  • [25] One-dimensional convolutional neural network for damage detection of jacket-type offshore platforms
    Bao, Xingxian
    Fan, Tongxuan
    Shi, Chen
    Yang, Guanlan
    OCEAN ENGINEERING, 2021, 219
  • [26] Multi-sensor data fusion for sign language recognition based on dynamic Bayesian network and convolutional neural network
    Xiao, Qinkun
    Zhao, Yidan
    Huan, Wang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 15335 - 15352
  • [27] A Decision-Level Fusion Method Based on Convolutional Neural Networks for Remote Sensing Scene Classification
    Jiang, Bitao
    Li, Xiaobin
    Sun, Tong
    Wang, Shengjin
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 128 - 132
  • [28] Multisensor Decision-Level Fusion Network Based on Attention Mechanism for Object Detection
    Xu, Chengcheng
    Zhao, Haiyan
    Xie, Hongbin
    Gao, Bingzhao
    IEEE SENSORS JOURNAL, 2024, 24 (19) : 31466 - 31480
  • [29] Multi-sensor data fusion for sign language recognition based on dynamic Bayesian network and convolutional neural network
    Qinkun Xiao
    Yidan Zhao
    Wang Huan
    Multimedia Tools and Applications, 2019, 78 : 15335 - 15352
  • [30] Neural architecture search for multi-sensor information fusion-based intelligent fault diagnosis
    Lin, Tantao
    Ren, Zhijun
    Zhu, Linbo
    Huang, Kai
    Zhu, Yongsheng
    Zeng, Li
    Wan, Jin
    ADVANCED ENGINEERING INFORMATICS, 2024, 62