Symbolic calculus on the nilpotent orbits of SO0(1,2)

被引:0
|
作者
Renaud, J
机构
[1] Lab. de Phys. Theor. et Mathematique, Université Paris VII, F-75251 Paris Cedex 05
关键词
coadjoint conical orbits; zero mass particles; symbolic calculus; Poincare group; (anti-)deSitter space-time; Minkowski space-time;
D O I
10.1016/0393-0440(95)00029-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coadjoint conical orbits in so(1, 2)* similar or equal to su(1, 1)* are the phase spaces of the zero mass particles on the two-dimensional (anti-)de Sitter space-time. It contains also, as an open dense subset, the phase space for massless particles on one-dimensional Minkowski space-time when one identifies the Poincare group to a subgroup of the conformal group SO0(2, 2) similar or equal to SO0(1, 2) x SO0(1,2). On the other hand, the quantum representation associated to these systems is an indecomposable extension of the first term of the discrete series of representations of SO0(1,2) similar or equal to SU(1, 1)/Z(2) We present in this paper a symbol map linking this representation and this orbit. This calculus is invariant and behaves correctly in the classical limit. As a result we have obtained a conformally invariant symbolic calculus for massless particles on (anti-)de Sitter or Minkowski space-time in 1 + 1 dimension.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 50 条
  • [31] Bestiary of 6D (1,0) SCFTs: Nilpotent orbits and anomalies
    Baume, Florent
    Lawrie, Craig
    PHYSICAL REVIEW D, 2024, 110 (04)
  • [32] AN EMBEDDING OF THE POINCARE LIE-ALGEBRA INTO AN EXTENSION OF THE LIE FIELD OF SO0(1,4)
    HAVLICEK, M
    MOYLAN, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 5320 - 5332
  • [33] Covariant quantization of the Maxwell field in de Sitter space from SO0(2,4)-invariance
    Huguet, E.
    Faci, S.
    Queva, J.
    Renaud, J.
    GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [34] NILPOTENT ORBITS AND CODIMENSION-2 DEFECTS OF 6d N = (2,0) THEORIES
    Chacaltana, Oscar
    Distler, Jacques
    Tachikawa, Yuji
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (3-4):
  • [35] Quadratures and cubics in SO(3) and SO(1,2)
    Noakes, Lyle
    Popiel, Tomasz
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (04) : 463 - 473
  • [36] Resonances for the Laplacian: the Cases BC2 and C2 ( except SO0(p, 2) with p > 2 odd)
    Hilgert, J.
    Pasquale, A.
    Przebinda, T.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 159 - 182
  • [37] The extremal black holes of N=4 supergravity from so(8, 2+n) nilpotent orbits
    Bossard, Guillaume
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (03) : 539 - 565
  • [38] Spectral average of central values of automorphic L-functions for holomorphic cusp forms on SO0(m, 2), I
    Tsuzuki, Masao
    JOURNAL OF NUMBER THEORY, 2012, 132 (11) : 2407 - 2454
  • [39] Subregular nilpotent representations of sln and so2n+1
    Jantzen, JC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 : 223 - 257
  • [40] Quantization of the optical phase space S2 = {φ mod 2π, I > 0} in terms of the group SO↑(1,2)
    Kastrup, HA
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (10-11): : 975 - 1134