Use of radial basis functions and rough sets for evolutionary multi-objective optimization

被引:4
|
作者
Santana-Quintero, Luis V.
Serrano-Hernandez, Victor A.
Coello Coello, Carlos A.
Hernandez-Diaz, Alfredo G.
Molina, Julian
机构
关键词
D O I
10.1109/MCDM.2007.369424
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new multi-objective evolutionary algorithm (MOEA) which adopts a radial basis function (RBF) approach in order to reduce the number of fitness function evaluations performed to reach the Pareto front. The specific method adopted is derived from a comparative study conducted among several RBFs. In all cases, the NSGA-II (which is an approach representative of the state-of-the-art in the area) is adopted as our search engine with which the RBFs are hybridized. The resulting algorithm can produce very reasonable approximations of the true Pareto front with a very low number of evaluations, but is not able to spread solutions in an appropriate manner. This led us to introduce a second stage to the algorithm in which it is hybridized with rough sets theory in order to improve the spread of solutions. Rough sets, in this case, act as a local search approach which is able to generate solutions in the neighborhood of the few nondominated solutions previously generated. We show that our proposed hybrid approach only requires 2,000 fitness function evaluations in order to solve test problems with up to 30 decision variables. This is a very low value when compared with today's standards reported in the specialized literature.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 50 条
  • [41] An evolutionary multi-objective optimization system for earthworks
    Parente, M.
    Cortez, P.
    Gomes Correia, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6674 - 6685
  • [42] Evolutionary Multi-Objective Optimization for Biped Walking
    Yanase, Toshihiko
    Iba, Hitoshi
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2008, 5361 : 635 - 644
  • [43] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [44] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [45] Weighted Preferences in Evolutionary Multi-objective Optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 291 - +
  • [46] Interleaving Guidance in Evolutionary Multi-Objective Optimization
    Lam Thu Bui
    Kalyanmoy Deb
    Hussein A.Abbass
    Daryl Essam
    Journal of Computer Science & Technology, 2008, 23 (01) : 44 - 63
  • [47] Multi-objective evolutionary computation and fuzzy optimization
    Jimenez, F.
    Cadenas, J. M.
    Sanchez, G.
    Gomez-Skarmeta, A. F.
    Verdegay, J. L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 43 (01) : 59 - 75
  • [48] Uniformity Assessment for Evolutionary Multi-Objective Optimization
    Li, Miqing
    Zheng, Jinhua
    Xiao, Guixia
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 625 - 632
  • [49] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [50] Multi-objective evolutionary computation and fuzzy optimization
    Jiménez, F.
    Cadenas, J.M.
    Sánchez, G.
    Gómez-Skarmeta, A.F.
    Verdegay, J.L.
    International Journal of Approximate Reasoning, 2006, 43 (01): : 59 - 75