Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces

被引:31
|
作者
Bauschke, Heinz H. [1 ]
Bello Cruz, J. Y. [2 ]
Nghia, Tran T. A. [3 ]
Pha, Hung M. [4 ]
Wang, Xianfu [1 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[3] Oakland Univ, Math & Stat, Rochester, MI 48309 USA
[4] Univ Massachusetts Lowell, Dept Math Sci, 265 Riverside St Olney Hall 428, Lowell, MA 01854 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Convergent and semi-convergent matrix; Friedrichs angle; Generalized Douglas-Rachford method; Linear convergence; Principal angle; Relaxed alternating projection method; CONVEX FEASIBILITY PROBLEMS; ITERATIVE METHODS; SINGULAR MATRICES; ALGORITHMS; OPERATORS; SYSTEMS; ANGLES;
D O I
10.1007/s11075-015-0085-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We systematically study the optimal linear convergence rates for several relaxed alternating projection methods and the generalized Douglas-Rachford splitting methods for finding the projection on the intersection of two subspaces. Our analysis is based on a study on the linear convergence rates of the powers of matrices. We show that the optimal linear convergence rate of powers of matrices is attained if and only if all subdominant eigenvalues of the matrix are semisimple. For the convenience of computation, a nonlinear approach to the partially relaxed alternating projection method with at least the same optimal convergence rate is also provided. Numerical experiments validate our convergence analysis.
引用
收藏
页码:33 / 76
页数:44
相关论文
共 38 条
  • [21] RANDOMIZED DOUGLAS-RACHFORD METHODS FOR LINEAR SYSTEMS: IMPROVED ACCURACY AND EFFICIENCY
    Han, Deren
    Su, Yansheng
    Xie, Jiaxin
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 1045 - 1070
  • [22] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Avinash Dixit
    D. R. Sahu
    Pankaj Gautam
    T. Som
    Journal of Applied Mathematics and Computing, 2022, 68 : 953 - 977
  • [23] Convergence analysis of two-step inertial Douglas-Rachford algorithm and application
    Dixit, Avinash
    Sahu, D. R.
    Gautam, Pankaj
    Som, T.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 953 - 977
  • [24] Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems
    Minh N. Dao
    Hung M. Phan
    Journal of Global Optimization, 2018, 72 : 443 - 474
  • [25] THE FUN IS FINITE: DOUGLAS-RACHFORD and SUDOKU PUZZLE - FINITE TERMINATION and LOCAL LINEAR CONVERGENCE
    Tovey R.
    Liang J.
    Journal of Applied and Numerical Optimization, 2021, 3 (03): : 435 - 456
  • [26] Convergence of two Relaxed Alternating Methods
    Cheng, G. H.
    Huang, T. Z.
    Li, L.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [27] CONVERGENCE ANALYSIS OF THE GENERALIZED DOUGLAS-RACHFORD SPLITTING METHOD UNDER H OLDER SUBREGULARITY ASSUMPTIONS
    Zhang, Binbin
    Zhou, Chang
    Zhu, Jiangxing
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (07) : 5060 - 5077
  • [28] Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence
    Lorenz, Dirk A.
    Quoc Tran-Dinh
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (01) : 67 - 92
  • [29] Local Linear Convergence of the ADMM/Douglas-Rachford Algorithms without Strong Convexity and Application to Statistical Imaging
    Aspelmeier, Timo
    Charitha, C.
    Luke, D. Russell
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (02): : 842 - 868
  • [30] Comparing the methods of alternating and simultaneous projections for two subspaces
    Reich, Simeon
    Zalas, Rafal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 683 : 235 - 263