Nonlinear Fokker-Planck equations and generalized entropies

被引:46
|
作者
Martinez, S
Plastino, AR
Plastino, A
机构
[1] Natl Univ La Plata, Dept Phys, RA-1900 La Plata, Argentina
[2] Natl Univ La Plata, Fac Astron & Geophys, RA-1900 La Plata, Argentina
[3] CONICET, Argentine Natl Res Council, La Plata, Buenos Aires, Argentina
来源
PHYSICA A | 1998年 / 259卷 / 1-2期
关键词
D O I
10.1016/S0378-4371(98)00277-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider maximum entropy solutions to Nonlinear Fokker-Planck equations within general thermostatistical formalisms. We show that the family of generalized nonextensive entropies introduced by Tsallis is the only one that has an associated family of nonlinear Fokker-Planck equations endowed with time-dependent MaxEnt solutions of a generalized Gaussian type. Con sequently, the natural association that arises between Tsallis' thermostatistical formalism and special families of nonlinear Fokker-Planck equations is NOT a universal feature of general thermostatistical formalisms, but a particular feature of the Tsallis? one. (C) 1998 Elsevier Science B,V. All rights reserved.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [31] A procedure for obtaining general nonlinear Fokker-Planck equations
    Nobre, FD
    Curado, EMF
    Rowlands, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 334 (1-2) : 109 - 118
  • [32] Nonlinear Fokker-Planck equations related to standard thermostatistics
    Schwaemmle, V.
    Curado, E. M. F.
    Nobre, F. D.
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 152 - 156
  • [33] Random Walks Associated with Nonlinear Fokker-Planck Equations
    Mendes, Renio dos Santos
    Lenzi, Ervin Kaminski
    Malacarne, Luis Carlos
    Picoli, Sergio
    Jauregui, Max
    ENTROPY, 2017, 19 (04)
  • [34] Exact time-dependent solutions of the Renyi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal
    Frank, TD
    Daffertshofer, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 285 (3-4) : 351 - 366
  • [35] Nonlinear Fokker-Planck Equations, H-Theorem and Generalized Entropy of a Composed System
    Evangelista, Luiz R.
    Lenzi, Ervin K.
    ENTROPY, 2023, 25 (09)
  • [36] Composite generalized Laguerre spectral method for nonlinear Fokker-Planck equations on the whole line
    Wang, Tian-jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1462 - 1474
  • [37] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [38] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [39] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [40] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530