A MULTIDIMENSIONAL CENTRAL LIMIT THEOREM WITH SPEED OF CONVERGENCE FOR AXIOM A DIFFEOMORPHISMS

被引:0
|
作者
Xia Hongqiang [1 ]
Tan Dayao [2 ]
机构
[1] Wuhan Text Univ, Coll Sci, Wuhan 430073, Peoples R China
[2] Qinzhou Univ, Dept Math & Comp Sci, Qinzhou 535000, Peoples R China
基金
中国国家自然科学基金;
关键词
multidimensional central limit theorem; Axiom A diffeomorphisms; symbolic dynamics; transfer operator;
D O I
10.1016/S0252-9602(11)60303-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T : X -> X be an Axiom A diffeomorphism, m the Gibbs state for a Holder continuous function g. Assume that f : X -> R-d is a Holder continuous function with integral x fdm = 0. If the components of f are cohomologously independent, then there exists a positive definite symmetric matrix sigma(2) := sigma(2)(f) such that S-f/root n converges in distribution with respect to m to a Gaussian random variable with expectation 0 and covariance matrix sigma(2). Moreover, there exists a real number A > 0 such that, for any integer n >= 1, Pi (m(*) (1/root nS(n)f), N (0, sigma(2))) <= A/root n where m(*) (1/root nS(n)(f)) denotes the distribution of 1/root nS(n)(f) with respect to in, and Pi is the Prokhorov metric.
引用
收藏
页码:1123 / 1132
页数:10
相关论文
共 50 条