Gaussian particle filtering for tracking maneuvering targets

被引:5
|
作者
Ghirmai, Tadesse [1 ]
机构
[1] Jackson State Univ, Dept Comp Engn, Jackson, MS 39217 USA
关键词
D O I
10.1109/SECON.2007.342941
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Tracking for maneuvering targets in the presence of clutter is a challenging problem. In this paper; we present an algorithm for reliable tracking of maneuvering targets based on Gaussian particle Filtering (GPF) techniques. It has been shown that Sequential Monte Carlo (SMC) methods outperform the various Kalman filter based algorithms for nonlinear tracking models. The SMC, also known as particle filtering, methods approximate the posterior probability distribution of the parameter of interest using discrete random measures. GPF is another variant of the SMC methods which approximates the posterior distribution using a single Gaussian filter. Unlike the standard SMC methods GPF does not require particle resampling. This distinct advantage makes GPF to be easily amenable to parallel implementation using VLSI. The proposed tracker is tested in a fairly complex target trajectory. The target maneuvering is simulated using Markov jump process of three kinematics models having different accelerations. Computer simulations show the proposed algorithm exhibits excellent tracking capability in a fairly complex target maneuvering.
引用
收藏
页码:439 / 443
页数:5
相关论文
共 50 条
  • [41] Adaptive algorithms for maneuvering targets tracking
    Perov, A.I.
    Radiotekhnika, 2002, (07): : 73 - 81
  • [42] Tracking filter for maneuvering inconspicuous targets
    Bibika, V.I.
    Utemov, S.V.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1993, 48 (06): : 64 - 66
  • [43] Adaptive Gaussian Mixture Filtering for Multi-sensor Maneuvering Cislunar Space Object Tracking
    Iannamorelli, John L.
    Legrand, Keith A.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2025, 72 (01):
  • [44] Particle filtering algorithms for tracking a maneuvering target using a Network of wireless dynamic sensors
    Míguez, Joaquín
    Artés-Rodríguez, Antonio
    Eurasip Journal on Applied Signal Processing, 2006, 2006
  • [45] Particle filtering algorithms for tracking a maneuvering target using a network of wireless dynamic sensors
    Miguez, Joaquin
    Artes-Rodriguez, Antonio
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)
  • [46] Gaussian particle filtering
    Kotecha, JH
    Djuric, PM
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 429 - 432
  • [47] Gaussian particle filtering
    Kotecha, JH
    Djuric, PA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (10) : 2592 - 2601
  • [48] Particle Filtering Algorithms for Tracking a Maneuvering Target Using a Network of Wireless Dynamic Sensors
    Joaquín Míguez
    Antonio Artés-Rodríguez
    EURASIP Journal on Advances in Signal Processing, 2006
  • [49] Constrained Multiple Model Particle Filtering for Bearings-Only Maneuvering Target Tracking
    Zhang, Hongwei
    Li, Liangqun
    Xie, Weixin
    IEEE ACCESS, 2018, 6 : 51721 - 51734
  • [50] Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources
    Teulière, V
    Brun, O
    PARALLEL COMPUTING, 2003, 29 (08) : 1069 - 1090