Quantum computing models for artificial neural networks

被引:64
|
作者
Mangini, S. [1 ,2 ]
Tacchino, F. [3 ]
Gerace, D. [1 ]
Bajoni, D. [4 ]
Macchiavello, C. [1 ,2 ,5 ]
机构
[1] Univ Pavia, Dipartimento Fis, Via Bassi 6, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucl, Sez Pavia, Via Bassi 6, I-27100 Pavia, Italy
[3] IBM Res Zurich, IBM Quantum, Sumerstr 4, CH-8803 Ruschlikon, Switzerland
[4] Univ Pavia, Dipartimento Ingn Ind & Informaz, Via Ferrata 1, I-27100 Pavia, Italy
[5] CNR INO, Largo E Fermi 6, I-50125 Florence, Italy
基金
欧盟地平线“2020”;
关键词
LEARNING ALGORITHM;
D O I
10.1209/0295-5075/134/10002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neural networks are computing models that have been leading progress in Machine Learning (ML) and Artificial Intelligence (AI) applications. In parallel, the first small-scale quantum computing devices have become available in recent years, paving the way for the development of a new paradigm in information processing. Here we give an overview of the most recent proposals aimed at bringing together these ongoing revolutions, and particularly at implementing the key functionalities of artificial neural networks on quantum architectures. We highlight the exciting perspectives in this context, and discuss the potential role of near-term quantum hardware in the quest for quantum machine learning advantage. Copyright (C) 2021 EPLA
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Neural networks and learning systems in distributed computing and artificial intelligence
    De la Prieta, Fernando
    Corchado Rodriguez, Juan M.
    NEUROCOMPUTING, 2021, 423 : 668 - 669
  • [22] A study of granular computing in the agenda of growth of artificial neural networks
    Song M.
    Wang Y.
    Granular Computing, 2016, 1 (04) : 247 - 257
  • [23] Intelligent Generative Models for Quantum Neural Networks
    Ding, Xiaodong
    Xiong, Qibing
    Xu, Jinchen
    Liu, Fudong
    Qiu, Junling
    Zhu, Yu
    Hou, Yifan
    Shan, Zheng
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [24] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Muhammet Yilmaz
    Fatih Tosunoğlu
    Nur Hüseyin Kaplan
    Fatih Üneş
    Yusuf Sinan Hanay
    Modeling Earth Systems and Environment, 2022, 8 : 5547 - 5563
  • [25] Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
    Yilmaz, Muhammet
    Tosunoglu, Fatih
    Kaplan, Nur Huseyin
    Unes, Fatih
    Hanay, Yusuf Sinan
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 5547 - 5563
  • [26] Artificial neural networks models with fuzziness and chaos phenomena
    Garliauskas, A
    INFORMATICA, 2003, 14 (02) : 181 - 194
  • [27] Hybrid Artificial Neural Networks: Models, Algorithms and Data
    Gutierrez, P. A.
    Hervas-Martinez, C.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 177 - 184
  • [28] Artificial neural networks models used for fishery products
    Kilinc, Rem
    Kilinc, Berna
    Gevrekci, Yakut
    Takma, Cigdem
    JOURNAL OF FOOD SAFETY AND FOOD QUALITY-ARCHIV FUR LEBENSMITTELHYGIENE, 2024, 75 (01): : 24 - 33
  • [29] Generation of artificial neural networks models in anticancer study
    Sousa, Ines J.
    Padron, Jose M.
    Fernandes, Miguel X.
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4): : 577 - 582
  • [30] Alternative Approaches for Growth Models: Artificial Neural Networks
    Benzer, Recep
    Benzer, Semra
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,