ANNz2-Photometric redshift and probability density function estimation using machine-learning

被引:1
|
作者
Sadeh, Iftach [1 ]
机构
[1] UCL, Dept Phys & Astron, Astrophys Grp, Gower St, London WC1E 6BT, England
来源
关键词
techniques: photometric; galaxies: distances and redshifts;
D O I
10.1017/S1743921314010849
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Large photometric galaxy surveys allow the study of questions at the forefront of science, such as the nature of dark energy. The success of such surveys depends on the ability to measure the photometric redshifts of objects (photo-zs), based on limited spectral data. A new major version of the public photo-z estimation software, ANNz, is presented here. The new code incorporates several machine-learning methods, such as artificial neural networks and boosted decision/ regression trees, which are all used in concert. The objective of the algorithm is to dynamically optimize the performance of the photo-z estimation, and to properly derive the associated uncertainties. In addition to single-value solutions, the new code also generates full probability density functions in two independent ways.
引用
收藏
页码:316 / 318
页数:3
相关论文
共 50 条
  • [21] Korean fog probability retrieval using remote sensing combined with machine-learning
    Lee, Han-Byul
    Heo, Jun-Hyung
    Sohn, Eun-Ha
    GISCIENCE & REMOTE SENSING, 2021, 58 (08) : 1434 - 1457
  • [22] Predicting the work function of 2D MXenes using machine-learning methods
    Roy, Pranav
    Rekhi, Lavie
    Koh, See Wee
    Li, Hong
    Choksi, Tej S.
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [23] Nonparametric Probability Density Function Estimation Using the Padé Approximation
    Aghamiri, Hamid Reza
    Hosseini, S. Abolfazl
    Green, James R.
    Oommen, B. John
    ALGORITHMS, 2025, 18 (02)
  • [24] Probability density function estimation using orthogonal forward regression
    Chen, S.
    Hong, X.
    Harris, C. J.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2491 - +
  • [25] Probability density estimation using adaptive activation function neurons
    Fiori, S
    Bucciarelli, P
    NEURAL PROCESSING LETTERS, 2001, 13 (01) : 31 - 42
  • [26] Probability Density Estimation Using Adaptive Activation Function Neurons
    Simone Fiori
    Paolo Bucciarelli
    Neural Processing Letters, 2001, 13 : 31 - 42
  • [27] Estimation of a probability density function using interval aggregated data
    Huang, Jianhua Z.
    Wang, Xueying
    Wu, Ximing
    Zhou, Lan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (15) : 3093 - 3105
  • [28] A PROBABILITY DENSITY FUNCTION ESTIMATION USING F-TRANSFORM
    Holcapek, Michal
    Tichy, Tomas
    KYBERNETIKA, 2010, 46 (03) : 447 - 458
  • [29] Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks
    Lee, Joongoo
    Shin, Min-Su
    ASTRONOMICAL JOURNAL, 2021, 162 (06):
  • [30] Fast reinforcement learning using asymmetric probability density function
    Umesako, K
    Obayashi, M
    Kobayashi, K
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 804 - 809