Dynamics and integrability of the swinging Atwood machine generalisations

被引:3
|
作者
Szuminski, Wojciech [1 ]
Maciejewski, Andrzej J. [2 ]
机构
[1] Univ Zielona Gora, Inst Phys, Licealna 9, PL-65407 Zielona Gora, Poland
[2] Univ Zielona Gora, Janusz Gil Inst Astron, Licealna 9, PL-65407 Zielona Gora, Poland
关键词
Ordinary differential equations; Hamiltonian systems; Chaos; Integrability; Generalised swinging Atwood's machine; TIME-REVERSAL SYMMETRY; HAMILTONIAN-SYSTEMS; NONINTEGRABILITY; ORBITS; MOTION; ORDER;
D O I
10.1007/s11071-022-07680-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the dynamics and integrability of two generalisations of a 3D Swinging Atwood's Machine with additional Coulomb's interactions and Hooke's law of elasticity. The complexity of these systems is presented with the help of Poincare cross sections, phase-parametric diagrams and Lyapunov exponents spectrums. Amazingly, such systems possess both chaotic and integrable dynamics. For the integrable cases we find additional first integrals and we construct general solutions written in terms of elliptic functions. Moreover, we present bifurcation diagrams for the integrable cases and we find resonance curves, which give families of periodic orbits of the systems. In the absence of the gravity, both models are super-integrable.
引用
收藏
页码:2101 / 2128
页数:28
相关论文
共 50 条
  • [41] A new technology for resolving the dynamics of a swinging bat
    King, Kevin
    Hough, Jessandra
    McGinnis, Ryan
    Perkins, N. C.
    SPORTS ENGINEERING, 2012, 15 (01) : 41 - 52
  • [42] A new technology for resolving the dynamics of a swinging bat
    Kevin King
    Jessandra Hough
    Ryan McGinnis
    N. C. Perkins
    Sports Engineering, 2012, 15 (1) : 41 - 52
  • [43] Variable mass dynamic: hanging chain in Atwood machine
    Sismanoglu, B. N.
    Caetano, R. F.
    Germano, J. S. E.
    Rezende, M. V. O.
    Hoyer, Y. D.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2011, 33 (02):
  • [44] Relational Dynamics of Swinging Relationships: An Exploratory Study
    Vaillancourt, Kourtney
    Few-Demo, April
    FAMILY JOURNAL, 2014, 22 (03): : 311 - 320
  • [45] Dynamics of a Spool-Block Atwood System
    El Idrissi, Abdallah
    Calabrese, Dominic
    Hickox, Tyler
    PHYSICS TEACHER, 2020, 58 (03): : 173 - 175
  • [46] USING THE ATWOOD MACHINE TO STUDY STOKES-LAW
    GREENWOOD, MS
    FAZIO, F
    RUSSOTTO, M
    WILKOSZ, A
    AMERICAN JOURNAL OF PHYSICS, 1986, 54 (10) : 904 - 906
  • [47] Some generalisations of integral transforms and their use in applied dynamics research
    Rippl, Jiri
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1988, 33 (04): : 493 - 508
  • [48] Modelling Atwood’s Machine with Three Degrees of Freedom
    Alexander N. Prokopenya
    Mathematics in Computer Science, 2019, 13 : 247 - 257
  • [49] Moving from Generalisations to Specificity about Mangrove –Saltmarsh Dynamics
    Kerrylee Rogers
    Ken W. Krauss
    Wetlands, 2019, 39 : 1155 - 1178
  • [50] Probabilistic Interpretations of Integrability for Game Dynamics
    William H. Sandholm
    Dynamic Games and Applications, 2014, 4 : 95 - 106