Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China

被引:59
|
作者
Yu, Shiqin [1 ,2 ]
Chen, Yuanqi [3 ]
Zhao, Jie [4 ]
Fu, Shenglei [1 ,5 ]
Li, Zhian [1 ]
Xia, Hanping [1 ]
Zhou, Lixia [1 ]
机构
[1] Chinese Acad Sci, Key Lab Vegetat Restorat & Management Degraded Ec, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Hunan Univ Sci & Technol, Hunan Prov Key Lab Coal Resources Clean Utilizat, Xiangtan 411201, Peoples R China
[4] Chinese Acad Sci, Key Lab Agroecol Proc Subtrop Reg, Inst Subtrop Agr, Changsha 410125, Hunan, Peoples R China
[5] Henan Univ, Coll Environm & Planning, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil CO2 efflux; Q(10); Vegetation; Heterotrophic respiration; Autotrophic respiration; Soil carbon; TERRESTRIAL CARBON STORAGE; ECOSYSTEM RESPIRATION; FOREST ECOSYSTEMS; ROOT RESPIRATION; CO2; EFFLUX; PLANTATIONS; DEPENDENCE; PATTERNS; PHOTOSYNTHESIS; DECOMPOSITION;
D O I
10.1016/j.scitotenv.2017.06.194
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The temperature sensitivity of soil respiration (Q(10)) is a key parameter for estimating the feedback of soil respiration to global warming. The Q(10) of total soil respiration (R-t) has been reported to have high variability at both local and global scales, and vegetation type is one of the most important drivers. However, little is known about how vegetation types affect the Q(10) of soil heterotrophic (R-h) and autotrophic (R-a) respirations, despite their contrasting roles in soil carbon sequestration and ecosystem carbon cycles. In the present study, five typical plantation forests and a naturally developed shrub and herb land in subtropical China were selected for investigation of soil respiration. Trenching was conducted to separate Rh and Ra in each vegetation type. The results showed that both R-t and R-h were significantly correlated with soil temperature in all vegetation types, whereas Ra was significantly correlated with soil temperature in only four vegetation types. Moreover, on average, soil temperature explained only 15.0% of the variation in Ra in the six vegetation types. These results indicate that soil temperature may be not a primary factor affecting R-a. Therefore, modeling of Ra based on its temperature sensitivity may not always be valid. The Q(10) of Rh was significantly affected by vegetation types, which indicates that the response of the soil carbon pool to climate warming may vary with vegetation type. In contrast, differences in neither the Q(10) of R-t nor that of R-a among these vegetation types were significant. Additionally, variation in the Q(10) of R-t among vegetation types was negatively related to fine root biomass, whereas the Q(10) of R-h was mostly related to total soil nitrogen. However, the Q(10) of R-a was not correlated with any of the environmental variables monitored in this study. These results emphasize the importance of independently studying the temperature sensitivity of R-t and its heterotrophic and autotrophic components. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 167
页数:8
相关论文
共 50 条
  • [41] Transplanting boreal soils to a warmer region increases soil heterotrophic respiration as well as its temperature sensitivity
    Tremblay, Sylvie L.
    D'Orangeville, Loic
    Lambert, Marie-Claude
    Houle, Daniel
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 116 : 203 - 212
  • [42] Patterns of soil respiration and its temperature sensitivity in grassland ecosystems across China
    Feng, Jiguang
    Wang, Jingsheng
    Song, Yanjun
    Zhu, Biao
    BIOGEOSCIENCES, 2018, 15 (17) : 5329 - 5341
  • [43] VARIATIONS OF SOIL RESPIRATION RATE AND ITS TEMPERATURE SENSITIVITY AMONG DIFFERENT CROP TYPES IN THE GROWING SEASON OF NORTHEAST CHINA
    Lai, Xuehui
    Ren, Xiaoli
    Zhao, Jinan
    FRESENIUS ENVIRONMENTAL BULLETIN, 2017, 26 (04): : 2651 - 2663
  • [44] Soil respiration response in different vegetation types at Mount Taihang, China
    Zeng, Xinhua
    Zhang, Wanjun
    Shen, Huitao
    Cao, Jiansheng
    Zhao, Xin
    CATENA, 2014, 116 : 78 - 85
  • [45] Temperature sensitivity of soil respiration in different ecosystems in China
    Peng, Shushi
    Piao, Shilong
    Wang, Tao
    Sun, Jinyu
    Shen, Zehao
    SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (05): : 1008 - 1014
  • [46] Soil autotrophic and heterotrophic respiration in response to different N fertilization and environmental conditions from a cropland in Northeast China
    Chen, Zengming
    Xu, Yehong
    Fan, Jianling
    Yu, Hongyan
    Ding, Weixin
    SOIL BIOLOGY & BIOCHEMISTRY, 2017, 110 : 103 - 115
  • [47] Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands
    Gomez-Casanovas, Nuria
    Matamala, Roser
    Cook, David R.
    Gonzalez-Meler, Miquel A.
    GLOBAL CHANGE BIOLOGY, 2012, 18 (08) : 2532 - 2545
  • [48] Experimental forest soil warming:: response of autotrophic and heterotrophic soil respiration to a short-term 10°C temperature rise
    Schindlbacher, Andreas
    Zechmeister-Boltenstern, Sophie
    Kitzler, Barbara
    Jandl, Robert
    PLANT AND SOIL, 2008, 303 (1-2) : 323 - 330
  • [49] Nonsignificant elevational trends of soil microbial respiration and temperature sensitivity in a subtropical forest
    Zhang, Bingwei
    Jiang, Yun
    He, Xianjin
    Wang, Youshi
    Li, Jiawei
    Huang, Xueli
    Shu, Zufei
    Li, Buhang
    Chu, Chengjin
    ECOSPHERE, 2024, 15 (03):
  • [50] Highly spatial variation of soil microbial respiration and temperature sensitivity in a subtropical forest
    Zhang, Bingwei
    Jiang, Yun
    Chen, Dongxia
    Wu, Zongrui
    Li, Buhang
    Chu, Chengjin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 808