Interface Controlled Micro- and Macro-Mechanical Properties of Vibration Processed Carbon Fiber/Epoxy Composites

被引:6
|
作者
Yang, Xiaobo [1 ]
Zhan, Lihua [2 ]
Peng, Yifeng [1 ]
Liu, Cong [1 ]
Xiong, Rui [1 ]
机构
[1] Cent South Univ, Coll Mech & Elect Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Inst Light Alloy, Changsha 410083, Peoples R China
基金
美国国家科学基金会;
关键词
carbon fiber reinforced plastics composite; random vibration assisted vacuum processing; fiber-resin interface; mechanical properties; fiber volume fraction; INTERLAMINAR SHEAR-STRENGTH; FIBER-REINFORCED POLYMER; VOID CONTENT; PUSH-IN; BEHAVIOR; DAMAGE; CONSOLIDATION; PERFORMANCE;
D O I
10.3390/polym13162764
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The fiber-resin interface is an important component that significantly affects mechanical properties of composites. Random vibration-assisted vacuum processing (RVAVP), a new method to improve the adhesion of the fiber-resin interface, was presented. The effects of different curing processes on mechanical properties were comprehensively assessed by combining the fiber push-out test, finite element model simulation, cure monitoring approach, and short-beam three-point bending test, and the correlation between fiber volume fraction and mechanical properties was quantified by a facile thermogravimetric analysis-based methodology. The results revealed that application of random vibration during the curing process can promote the impregnation of resin into fibers and impede the growth of interface defects while improving mechanical properties at the same time. For this reason, the laminates produced by RVAVP exhibited the average interfacial shear strength of 78.02 MPa and the average interface fracture toughness of 51.7 J/m(2), which is obtained a 48.26% and 90.77% improvement compared with the 0 MPa autoclave process. With the large observed increase in micro-mechanical properties, the average interlaminar shear strength of 93.91 MPa showed a slight reduction of 5.07% compared with the 0.6 MPa autoclave process. Meanwhile, the mechanical properties tended to be stable at the fiber volume fraction of 65.5%.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Micro- and macro-mechanical testing of transparent MgAl2O4 spinel
    Tokariev, O.
    Steinbrech, R. W.
    Schnetter, L.
    Malzbender, J.
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (12) : 4821 - 4826
  • [22] Micro- and macro-mechanical testing of transparent MgAl2O4 spinel
    O. Tokariev
    R. W. Steinbrech
    L. Schnetter
    J. Malzbender
    Journal of Materials Science, 2012, 47 : 4821 - 4826
  • [23] Non-Probabilistic Uncertainty Quantification of Fiber-Reinforced Composite Laminate Based on Micro- and Macro-Mechanical Analysis
    Hu, Juxi
    Wang, Lei
    Wang, Xiaojun
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [24] Optimizing Mechanical and Biotribological Properties of Carbon Fiber/Epoxy Composites by Applying Interconnected Graphene Interface
    Nie, Hongwen
    Zhang, Leilei
    Liu, Yeye
    Jiang, Peiyi
    Sheng, Hongchao
    Hou, Xianghui
    Li, Hejun
    APPLIED SURFACE SCIENCE, 2022, 604
  • [25] The Influence of Micro- and Nano-Filler Content on the Mechanical Properties of Epoxy Composites
    Ozsoy, Iskender
    Demirkol, Askin
    Mimaroglu, Abdullah
    Unal, Huseyin
    Demir, Zafer
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2015, 61 (10): : 601 - 609
  • [26] Effect of epoxy resin properties on the mechanical properties of carbon fiber/epoxy resin composites
    He, Hong-wei
    Gao, Feng
    Li, Kai-xi
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2013, 104 (09) : 899 - 902
  • [27] Mechanical Properties of Chopped Carbon Fiber Reinforced Epoxy Composites
    Ozsoy, N.
    Ozsoy, M.
    Mimaroglu, A.
    ACTA PHYSICA POLONICA A, 2016, 130 (01) : 297 - 299
  • [28] Mechanical Properties of Printed Epoxy-Carbon Fiber Composites
    Pierson, H. A.
    Celik, E.
    Abbott, A.
    De Jarnette, H.
    Gutierrez, L. Sierra
    Johnson, K.
    Koerner, H.
    Baur, J. W.
    EXPERIMENTAL MECHANICS, 2019, 59 (06) : 843 - 857
  • [29] Mechanical Properties of Printed Epoxy-Carbon Fiber Composites
    H. A. Pierson
    E. Celik
    A. Abbott
    H. De Jarnette
    L. Sierra Gutierrez
    K. Johnson
    H. Koerner
    J. W. Baur
    Experimental Mechanics, 2019, 59 : 843 - 857
  • [30] The effect of fiber architecture on the mechanical properties of carbon/epoxy composites
    Muralidhara, B.
    Babu, S. P. Kumaresh
    Suresha, B.
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 1755 - 1764