A single-atom detector integrated on an atom chip: fabrication, characterization and application

被引:21
|
作者
Heine, D. [1 ,2 ]
Rohringer, W. [1 ]
Fischer, D. [1 ]
Wilzbach, M. [1 ,2 ]
Raub, T. [1 ]
Loziczky, S. [1 ]
Liu, XiYuan [3 ]
Groth, S. [2 ]
Hessmo, B. [1 ,2 ]
Schmiedmayer, J. [1 ,2 ]
机构
[1] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria
[2] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
[3] Univ Mannheim, Lehrstuhl Optoelekt, D-68131 Mannheim, Germany
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
奥地利科学基金会;
关键词
NEUTRAL ATOMS; DYNAMICS; CAVITY; MICROSCOPE; BEAM;
D O I
10.1088/1367-2630/12/9/095005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a robust and reliable fluorescence detector for single atoms that is fully integrated on an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single-atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral Rb-87 atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows us to determine the number of detected photons per atom and from there the atom detection efficiency. The second-order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi oscillations. With simple improvements, one can increase the detection efficiency to 95%.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] SINGLE-ATOM TRANSISTOR
    Borman, Stu
    CHEMICAL & ENGINEERING NEWS, 2012, 90 (09) : 8 - 8
  • [32] Single-atom efficiency
    Alexandra R. Groves
    Nature Synthesis, 2022, 1 : 670 - 670
  • [33] Single-Atom Suture
    Wang, Chenyang
    Li, Xiang
    Ni, Erli
    Yang, Wenxuan
    Zeng, Ziyue
    Liu, Haiyang
    Cheng, Tingting
    Yu, Ting
    Zeng, Mengqi
    Fu, Lei
    ACS NANO, 2025, 19 (02) : 2468 - 2474
  • [34] Single-Atom Catalysts
    Gawande, Manoj B.
    Ariga, Katsuhiko
    Yamauchi, Yusuke
    ADVANCED MATERIALS INTERFACES, 2021, 8 (08):
  • [35] Single-atom nanozymes
    Huang, Liang
    Chen, Jinxing
    Gan, Linfeng
    Wang, Jin
    Dong, Shaojun
    SCIENCE ADVANCES, 2019, 5 (05)
  • [36] Resonator-aided single-atom detection on a microfabricated chip
    Teper, Igor
    Lin, Yu-Ju
    Vuletic, Vladan
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [37] Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires
    Wang, Qingling
    Liu, Ran
    Xiang, Dong
    Sun, Mingyu
    Zhao, Zhikai
    Sun, Lu
    Mei, Tingting
    Wu, Pengfei
    Liu, Haitao
    Guo, Xuefeng
    Li, Zong-Liang
    Lee, Takhee
    ACS NANO, 2016, 10 (10) : 9695 - 9702
  • [38] Atomic Configuration and Conductance of Tantalum Single-Atom Contacts and Single-Atom Wires
    Kizuka, Tokushi
    Murata, Satoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (09)
  • [39] Carbon-based single-atom catalysts derived from biomass: Fabrication and application
    Li, Junkai
    Wang, Guanhua
    Sui, Wenjie
    Parvez, Ashak Mahmud
    Xu, Ting
    Si, Chuanling
    Hu, Jinguang
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2024, 329
  • [40] Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial
    Song, Haihan
    Zhang, Mengli
    Tong, Weijun
    MOLECULES, 2022, 27 (17):