NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES

被引:5
|
作者
Fernandes, Claudio A. [1 ]
Karlovich, Alexei Y. [1 ]
Karlovich, Yuri, I [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
[2] Univ Autonoma Estado Morelos, Inst Invest Ciencias Basicas & Aplicadas, Ctr Invest Ciencias, AV Univ 1001, Cuernavaca 62209, Morelos, Mexico
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2019年 / 10卷 / 04期
关键词
Fourier convolution operator; compactness; Banach function space; Hardy-Littlewood maximal operator; Lebesgue space with Muckenhoupt weight; WEIGHTED NORM INEQUALITIES; MAXIMAL OPERATOR;
D O I
10.1215/20088752-2019-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(R) be a separable Banach function space such that the Hardy-Littlewood maximal operator M is bounded on X(R) and on its associate space X' (R). Suppose that a is a Fourier multiplier on the space X(R) We show that the Fourier convolution operator W-0(a) with symbol a is compact on the space X(R) if and only if a = 0. This result implies that nontrivial Fourier convolution operators on Lebesgue spaces with Muckenhoupt weights are never compact.
引用
收藏
页码:553 / 561
页数:9
相关论文
共 50 条
  • [21] FACTORIZATION OF LIPSCHITZ OPERATORS ON BANACH FUNCTION SPACES
    Achour, D.
    Dahia, E.
    Rueda, P.
    Sanchez Perez, E. A.
    Yahi, R.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 1091 - 1104
  • [22] COMPACTNESS OF INTEGRAL OPERATORS IN BANACH FUNCTION SPACES
    LUXEMBURG, WAJ
    ZAANEN, AC
    MATHEMATISCHE ANNALEN, 1963, 149 (02) : 150 - 180
  • [23] Algebras of multiplication operators in Banach function spaces
    de Pagter, B
    Ricker, WJ
    JOURNAL OF OPERATOR THEORY, 1999, 42 (02) : 245 - 267
  • [24] INVERTIBLE COMPOSITION OPERATORS ON BANACH FUNCTION SPACES
    Kumar, Rajeev
    MATEMATICKI VESNIK, 2007, 59 (03): : 97 - 111
  • [25] Bochner representable operators on Banach function spaces
    Marian Nowak
    Positivity, 2018, 22 : 1303 - 1309
  • [26] Bochner representable operators on Banach function spaces
    Nowak, Marian
    POSITIVITY, 2018, 22 (05) : 1303 - 1309
  • [27] Bilinear Operators on Ball Banach Function Spaces
    Ho, Kwok-Pun
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [28] Boundedness of Pseudodifferential Operators on Banach Function Spaces
    Karlovich, Alexei Yu.
    OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 185 - 195
  • [29] Compactness of averaging operators on Banach function spaces
    Koshino, Katsuhisa
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (04)
  • [30] Matrix multiplication operators on Banach function spaces
    H. Hudzik
    Rajeev Kumar
    Romesh Kumar
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 71 - 81