Evaluating prediction uncertainty in simulation models

被引:68
|
作者
McKay, MD [1 ]
Morrison, JD [1 ]
Upton, SC [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
model uncertainty; uncertainty analysis; sensitivity analysis; nonparametric variance decomposition;
D O I
10.1016/S0010-4655(98)00155-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Input values are a source of uncertainty for model predictions. When input uncertainty is characterized by a probability distribution, prediction uncertainty is characterized by the induced prediction distribution. Comparison of a model predictor based on a subset Of model inputs to the full model predictor leads to a natural decomposition of the prediction variance and the correlation ratio as a measure of importance. Because the variance decomposition does not depend on assumptions about the form of the relation between inputs and output, the analysis can be called nonparametric. Variance components can be estimated through designed computer experiments. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 50 条
  • [11] Uncertainty Transformation in Ecological Simulation Models
    Erechtchoukova, Marina G.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 2477 - 2483
  • [12] Validation of Dynamic Simulation Models on Uncertainty
    Guo, Xiaojun
    Su, Shaojing
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 60 - 63
  • [13] A framework for uncertainty assessment in simulation models
    Wallentin, Gudrun
    Car, Adrijana
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (02) : 408 - 422
  • [14] Unraveling Uncertainty: The Impact of Biological and Analytical Variation on the Prediction Uncertainty of Categorical Prediction Models
    Martens, Remy J. H.
    van Doorn, William P. T. M.
    Leers, Mathie P. G.
    Meex, Steven J. R.
    Helmich, Floris
    JOURNAL OF APPLIED LABORATORY MEDICINE, 2024, 10 (02): : 339 - 351
  • [15] Evaluating prediction models in reproductive medicine
    Coppus, S. F. P. J.
    van der Veen, F.
    Opmeer, B. C.
    Mol, B. W. J.
    Bossuyt, P. M. M.
    HUMAN REPRODUCTION, 2009, 24 (08) : 1774 - 1778
  • [16] Techniques for evaluating fault prediction models
    Yue Jiang
    Bojan Cukic
    Yan Ma
    Empirical Software Engineering, 2008, 13 : 561 - 595
  • [17] Techniques for evaluating fault prediction models
    Jiang, Yue
    Cukic, Bojan
    Ma, Yan
    EMPIRICAL SOFTWARE ENGINEERING, 2008, 13 (05) : 561 - 595
  • [18] Metrics for evaluating performance and uncertainty of Bayesian network models
    Marcot, Bruce G.
    ECOLOGICAL MODELLING, 2012, 230 : 50 - 62
  • [19] Evaluating Uncertainty of Microwave Calibration Models With Regression Residuals
    Williams, Dylan F.
    Jamroz, Benjamin F.
    Rezac, Jacob D.
    Jones, Robert D.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (06) : 2454 - 2467
  • [20] Evaluating the performance of regional-scale meteorological models: effect of clouds simulation on temperature prediction
    Liu, G
    Hogrefe, C
    Rao, ST
    ATMOSPHERIC ENVIRONMENT, 2003, 37 (11) : 1425 - 1433