Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion

被引:13
|
作者
Tentori, A. [1 ]
Colaitis, A. [1 ]
Theobald, W. [2 ,3 ]
Casner, A. [1 ]
Raffestin, D. [1 ]
Ruocco, A. [1 ,4 ]
Trela, J. [1 ]
Le Bel, E. [1 ]
Anderson, K. [2 ]
Wei, M. [2 ]
Henderson, B. [2 ]
Peebles, J. [2 ]
Scott, R. [4 ]
Baton, S. [5 ]
Pikuz, S. A. [6 ]
Betti, R. [2 ,3 ,7 ]
Khan, M. [8 ]
Woolsey, N. [8 ]
Zhang, S. [9 ]
Batani, D. [1 ]
机构
[1] Univ Bordeaux, CEA, CNRS, UMR 5107,CELIA,Ctr Lasers Intenses & Applicat, F-33405 Talence, France
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Harwell Oxford, STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[5] Sorbonne Univ, CNRS, UMR 7605,LULI, CEA,Ecole Polytech,Lab lUtilisat Lasers Intenses, F-91128 Palaiseau, France
[6] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[7] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
[8] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England
[9] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
基金
英国工程与自然科学研究理事会;
关键词
INTENSITY; CODE;
D O I
10.1063/5.0059651
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on planar target experiments conducted on the OMEGA-EP laser facility performed in the context of the shock ignition (SI) approach to inertial confinement fusion. The experiment aimed at characterizing the propagation of strong shock in matter and the generation of hot electrons (HEs), with laser parameters relevant to SI (1-ns UV laser beams with I similar to 10(16) W/cm(2)). Time-resolved radiographs of the propagating shock front were performed in order to study the hydrodynamic evolution. The hot-electron source was characterized in terms of Maxwellian temperature, T-h, and laser to hot-electron energy conversion efficiency ? using data from different x-ray spectrometers. The post-processing of these data gives a range of the possible values for T-h and ? [i.e., T h [ keV ] (sic)& nbsp;(20, 50) and ? (sic)& nbsp; (2%, 13%)]. These values are used as input in hydrodynamic simulations to reproduce the results obtained in radiographs, thus constraining the range for the HE measurements. According to this procedure, we found that the laser converts similar to 10% +/-& nbsp;4% of energy into hot electrons with T-h = 27 +/-& nbsp;8 keV. The paper shows how the coupling of different diagnostics and numerical tools is required to sufficiently constrain the problem, solving the large ambiguity coming from the post-processing of spectrometers data. The effect of the hot electrons on the shock dynamics is then discussed, showing an increase in the pressure around the shock front. The low temperature found in this experiment without pre-compression laser pulses could be advantageous for the SI scheme, but the high conversion efficiency may lead to an increase in the shell adiabat, with detrimental effects on the implosion.
引用
收藏
页数:16
相关论文
共 31 条
  • [21] Microphysics of shock-grain interaction for inertial confinement fusion ablators in a fluid approach
    Li, G. J.
    Davidovits, S.
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [22] Effect of hot-electron energy distribution in the thermonuclear burn degradation in Directly-Driven Inertial Confinement Fusion
    Mauro Temporal
    Benoit Canaud
    Rafael Ramis
    The European Physical Journal D, 2021, 75
  • [23] Effect of hot-electron energy distribution in the thermonuclear burn degradation in Directly-Driven Inertial Confinement Fusion
    Temporal, Mauro
    Canaud, Benoit
    Ramis, Rafael
    EUROPEAN PHYSICAL JOURNAL D, 2021, 75 (11):
  • [24] How Shock ignition can help to overcome the negative effects of hot electrons in direct-drive high-gain inertial confinement fusion
    Temporal, Mauro
    Canaud, Benoit
    Ramis, Rafael
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (05)
  • [25] The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion
    Edwards, M. J.
    Lindl, J. D.
    Spears, B. K.
    Weber, S. V.
    Atherton, L. J.
    Bleuel, D. L.
    Bradley, D. K.
    Callahan, D. A.
    Cerjan, C. J.
    Clark, D.
    Collins, G. W.
    Fair, J. E.
    Fortner, R. J.
    Glenzer, S. H.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A. V.
    Hatchett, S. P.
    Izumi, N.
    Jacoby, B.
    Jones, O. S.
    Koch, J. A.
    Kozioziemski, B. J.
    Landen, O. L.
    Lerche, R.
    MacGowan, B. J.
    MacKinnon, A. J.
    Mapoles, E. R.
    Marinak, M. M.
    Moran, M.
    Moses, E. I.
    Munro, D. H.
    Schneider, D. H.
    Sepke, S. M.
    Shaughnessy, D. A.
    Springer, P. T.
    Tommasini, R.
    Bernstein, L.
    Stoeffl, W.
    Betti, R.
    Boehly, T. R.
    Sangster, T. C.
    Glebov, V. Yu.
    McKenty, P. W.
    Regan, S. P.
    Edgell, D. H.
    Knauer, J. P.
    Stoeckl, C.
    Harding, D. R.
    Batha, S.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [26] Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition
    Baton, S. D.
    Colaitis, A.
    Rousseaux, C.
    Boutoux, G.
    Brygoo, S.
    Jacquet, L.
    Koenig, M.
    Batani, D.
    Casner, A.
    Le Bel, E.
    Raffestin, D.
    Tentori, A.
    Tikhonchuk, V
    Trela, J.
    Reverdin, C.
    Le-Deroff, L.
    Theobald, W.
    Cristoforetti, G.
    Gizzi, L. A.
    Koester, P.
    Labate, L.
    Shigemori, K.
    HIGH ENERGY DENSITY PHYSICS, 2020, 36
  • [27] Experimental study of hot electron generation in shock ignition relevant high-intensity regime with large scale hot plasmas
    Zhang, S.
    Krauland, C. M.
    Peebles, J.
    Li, J.
    Beg, F. N.
    Alexander, N.
    Theobald, W.
    Betti, R.
    Haberberger, D.
    Campbell, E. M.
    Yan, R.
    Borwick, E.
    Ren, C.
    Wei, M. S.
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [28] Pump depletion and hot-electron generation in long-density-scale-length plasma with shock-ignition high-intensity laser
    Li, J.
    Zhang, S.
    Krauland, C. M.
    Wen, H.
    Beg, F. N.
    Ren, C.
    Wei, M. S.
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [29] Observations of Multiple Nuclear Reaction Histories and Fuel-Ion Species Dynamics in Shock-Driven Inertial Confinement Fusion Implosions
    Sio, H.
    Frenje, J. A.
    Le, A.
    Atzeni, S.
    Kwan, T. J. T.
    Johnson, M. Gatu
    Kagan, G.
    Stoeckl, C.
    Li, C. K.
    Parker, C. E.
    Forrest, C. J.
    Glebov, V.
    Kabadi, N. V.
    Bose, A.
    Rinderknecht, H. G.
    Amendt, P.
    Casey, D. T.
    Mancini, R.
    Taitano, W. T.
    Keenan, B.
    Simakov, A. N.
    Chacon, L.
    Regan, S. P.
    Sangster, T. C.
    Campbell, E. M.
    Seguin, F. H.
    Petrasso, R. D.
    PHYSICAL REVIEW LETTERS, 2019, 122 (03)
  • [30] Two-dimensional simulations of laser-plasma interaction and hot electron generation in the context of shock-ignition research
    Klimo, O.
    Psikal, J.
    Tikhonchuk, V. T.
    Weber, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (05)