Improving the Precision of KNN Classifier using Nonlinear Weighting Method Based on the Spline Interpolation

被引:0
|
作者
Sanei, Farideh [1 ]
Harifi, Abbas [1 ]
Golzari, Shahram [1 ]
机构
[1] Univ Hormozgan, Dept Elect & Comp Engn, Bandarabbas, Iran
关键词
component; Nonlinear weighting; KNN classifier; Spline interpolation; FEATURE-SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precision improvement of the classifiers is one of the main challenges for the Artificial Intelligence researchers. Feature weighting is one of the most common ideas in this area. In this study, in order to increase the accuracy of the K-Nearest Neighbors (KNN) classifier, a nonlinear feature weighting method based on the Spline interpolation is used. In this approach, a unique nonlinear function is estimated for each feature. In order to find the best estimated parameters of the nonlinear function which is suitable for each feature, the evolutionary Genetic Algorithm is applied. Numerical results show that the nonlinear weighting method increases the accuracy of the classifiers compared to the linear weighting method.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 50 条
  • [31] Nonlinear error correct of intelligent sensor by using genetic algorithms and cubic spline interpolation
    Lei, L
    Wang, HJ
    Bai, Y
    Artificial Intelligence Applications and Innovations II, 2005, 187 : 435 - 440
  • [32] Using Cellular Automata for Improving KNN Based Spam Filtering
    Barigou, Fatiha
    Beldjilali, Bouziane
    Atmani, Baghdad
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2014, 11 (04) : 345 - 353
  • [33] Improving Neural Network Classifier Using Gradient-Based Floating Centroid Method
    Islam, Mazharul
    Liu, Shuangrong
    Zhang, Xiaojing
    Wang, Lin
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 423 - 431
  • [34] Discovery of Meaningful Rules by using DTW based on Cubic Spline Interpolation
    Calvo-Valverde, Luis-Alexander
    Alfaro-Barboza, David-Elias
    TECNOLOGIA EN MARCHA, 2020, 33 (02): : 137 - 149
  • [35] Peak Points Detection Using Spline Interpolation Based on FPGA Implementation
    Colak, Alperen Mustafa
    Manabe, Taito
    Kamasaka, Ryo
    Shibata, Yuichiro
    Kurokawa, Fujio
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2019, 19 (04) : 3 - 10
  • [36] Evaluation of the calibration method using iterative spline interpolation for array shape estimation
    Park, HY
    Youn, DH
    Lee, CY
    Kang, HW
    Kim, KM
    Dho, KC
    OCEANS '04 MTS/IEEE TECHNO-OCEAN '04, VOLS 1- 2, CONFERENCE PROCEEDINGS, VOLS. 1-4, 2004, : 593 - 597
  • [37] A numerical evaluation method of the revised ACAS algorithms using a smoothed spline interpolation
    Shirakawa, M
    Sumiya, Y
    Ozeki, S
    2000 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 1, 2000, : 539 - 545
  • [38] A Facial Expression Recognition Method based on Cubic Spline Interpolation and HOG features
    Xu, Fen
    Wang, Zhe
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1300 - 1305
  • [39] An improved EEMD method based on the adjustable cubic trigonometric cardinal spline interpolation
    Zhao, Di
    Huang, Ziyan
    Li, Hongyi
    Chen, Jiaxin
    Wang, Pidong
    DIGITAL SIGNAL PROCESSING, 2017, 64 : 41 - 48
  • [40] Double Layer PCA based Hyper Spectral Face Recognition using KNN Classifier
    Dabhade, Siddharth B.
    Bansod, Nagsen
    Naveena, M.
    Khobragade, Kavita
    Rode, Y. S.
    Kazi, M. M.
    Kale, K., V
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 289 - 293