An M-estimator for stochastic differential equations driven by fractional Brownian motion with small Hurst parameter

被引:5
|
作者
Chiba, Kohei [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama Cho, Toyonaka, Osaka, Japan
关键词
Fractional Brownian motion; Drift parameter estimation; Consistency; Asymptotic normality; Moment convergence;
D O I
10.1007/s11203-020-09214-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let us consider a stochastic differential equation driven by a fractional Brownian motion with Hurst parameter 1/4<H<1/2. We are interested in estimating the drift parameter from the completely observed data. We propose an M-estimator for the drift parameter. Under some assumptions on the drift coefficient, our estimator has consistency, asymptotic normality and moment convergence property.
引用
收藏
页码:319 / 353
页数:35
相关论文
共 50 条
  • [21] Nonlocal fractional stochastic differential equations driven by fractional Brownian motion
    Lv, Jingyun
    Yang, Xiaoyuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [22] Impulsive stochastic fractional differential equations driven by fractional Brownian motion
    Mahmoud Abouagwa
    Feifei Cheng
    Ji Li
    Advances in Difference Equations, 2020
  • [23] Fuzzy stochastic differential equations driven by fractional Brownian motion
    Hossein Jafari
    Marek T. Malinowski
    M. J. Ebadi
    Advances in Difference Equations, 2021
  • [24] Ergodicity of stochastic differential equations driven by fractional Brownian motion
    Hairer, M
    ANNALS OF PROBABILITY, 2005, 33 (02): : 703 - 758
  • [25] Approximation of stochastic differential equations driven by fractional Brownian motion
    Lisei, Hannelore
    Soos, Anna
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 227 - 241
  • [26] Fuzzy stochastic differential equations driven by fractional Brownian motion
    Jafari, Hossein
    Malinowski, Marek T.
    Ebadi, M. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [27] ESTIMATES FOR THE SOLUTION TO STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION WITH HURST PARAMETER H ∈ (1/3,1/2)
    Besalu, Mireia
    Nualart, David
    STOCHASTICS AND DYNAMICS, 2011, 11 (2-3) : 243 - 263
  • [28] Semilinear backward doubly stochastic differential equations and SPDEs driven by fractional Brownian motion with Hurst parameter in (0,1/2)
    Jing, Shuai
    Leon, Jorge A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (08): : 896 - 935
  • [29] Bayesian parameter inference for partially observed stochastic differential equations driven by fractional Brownian motion
    Mohamed Maama
    Ajay Jasra
    Hernando Ombao
    Statistics and Computing, 2023, 33
  • [30] CONTINUOUS DEPENDENCE OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY STANDARD AND FRACTIONAL BROWNIAN MOTION ON A PARAMETER
    Mishura, Y. S.
    Posashkova, S. V.
    Posashkov, S. V.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 83 : 92 - 105