Consistent Anomaly Detection and Localization of Multivariate Time Series via Cross-Correlation Graph-Based EncoderDecoder GAN

被引:21
|
作者
Liang, Haoran [1 ,2 ]
Song, Lei [1 ]
Du, Junrong [1 ,2 ]
Li, Xuzhi [1 ]
Guo, Lili [1 ,3 ]
机构
[1] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Key Lab Space Utilizat, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
关键词
Time series analysis; Anomaly detection; Generators; Feature extraction; Generative adversarial networks; Decoding; Training; Anomaly detection and location; cross correlation graph; encoder-decoder GAN; multivariate time series; NETWORK;
D O I
10.1109/TIM.2021.3139696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multivariate time series is widely derived from industrial facilities, such as power plants, manufacturing machines, spacecraft, digital devices, and so on, and anomaly detection and location is of great importance to industrial preventive maintenance. However, anomalies in multivariate time series always result from their unusual change of temporal or correlative features, and it is challenging to capture these complex characteristics. Besides, achieving consistent anomaly detection and location performance is also a tricky issue. In this article, a novel anomaly detection and location framework that combines generative adversarial networks and autoencoder is proposed to capture time dependent and correlation features of multivariate time series with the need of anomalous sequences. First, multitime scale correlation computation is utilized to encode multivariate time series into multiple cross correlation graphs, which can be fed into the proposed deep architecture for extracting more distinguishable features. On this basis, a robust cost function with multiple loss issues is designed, and reconstruction matrix deviation from original space of encoder & x2013;encoder structure is utilized to detect and locate abnormal time series, ensuring the consistency of detection and location tasks and the framework reliability. Extensive experiments on five industrial datasets are conducted to indicate our model is a generic and excellent framework for anomaly detection and location of multivariate time series.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] GAN-Based Anomaly Detection for Multivariate Time Series Using Polluted Training Set
    Du, Bowen
    Sun, Xuanxuan
    Ye, Junchen
    Cheng, Ke
    Wang, Jingyuan
    Sun, Leilei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12208 - 12219
  • [42] DGTAD: decomposition GAN-based transformer for anomaly detection in multivariate time series data
    Chen, Zixin
    Yu, Jiong
    Tan, Qiyin
    Li, Shu
    Du, XuSheng
    APPLIED INTELLIGENCE, 2024, 54 (24) : 13038 - 13056
  • [43] Self-attention-based graph transformation learning for anomaly detection in multivariate time series
    Wang, Qiushi
    Zhu, Yueming
    Sun, Zhicheng
    Li, Dong
    Ma, Yunbin
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (05)
  • [44] Graph Structure Change-Based Anomaly Detection in Multivariate Time Series of Industrial Processes
    Zhang, Zhen
    Geng, Zhiqiang
    Han, Yongming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6457 - 6466
  • [45] Multivariate Time Series Anomaly Detection Based on Reconstructed Differences Using Graph Attention Networks
    Kang, Jung Mo
    Kim, Myoung Ho
    FRONTIERS OF COMPUTER VISION, IW-FCV 2024, 2024, 2143 : 58 - 69
  • [46] MTS-GAT: multivariate time series anomaly detection based on graph attention networks
    Chen, Ling
    Mao, Yingchi
    Zhou, Hongliang
    Zhang, Benteng
    Wang, Zicheng
    Wu, Jie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 43 (01) : 38 - 49
  • [47] Multifractal temporally weighted detrended cross-correlation analysis of multivariate time series
    Jiang, Shan
    Li, Bao-Gen
    Yu, Zu-Guo
    Wang, Fang
    Vo Anh
    Zhou, Yu
    CHAOS, 2020, 30 (02)
  • [48] Correlation-Aware Spatial-Temporal Graph Learning for Multivariate Time-Series Anomaly Detection
    Zheng, Yu
    Koh, Huan Yee
    Jin, Ming
    Chi, Lianhua
    Phan, Khoa T.
    Pan, Shirui
    Chen, Yi-Ping Phoebe
    Xiang, Wei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11802 - 11816
  • [49] Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregations
    Wang, Hewen
    Yang, Renchi
    Shi, Jieming
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2023, 2023, 14148 : 64 - 79
  • [50] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72