Medical Data Mining Course Development in Postgraduate Medical Education: Web-Based Survey and Case Study

被引:3
|
作者
Yang, Lin [1 ]
Zheng, Si [1 ]
Xu, Xiaowei [1 ]
Sun, Yueping [1 ]
Wang, Xuwen [1 ]
Li, Jiao [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Med Informat & Lib, 3 Yabao Rd, Beijing 100020, Peoples R China
来源
JMIR MEDICAL EDUCATION | 2021年 / 7卷 / 04期
关键词
medical data mining; course development; online teaching; postgraduate medical education; ANALYTICS; 6-STEP;
D O I
10.2196/24027
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Background: Medical postgraduates' demand for data capabilities is growing, as biomedical research becomes more data driven, integrative, and computational. In the context of the application of big data in health and medicine, the integration of data mining skills into postgraduate medical education becomes important. Objective: This study aimed to demonstrate the design and implementation of a medical data mining course for medical postgraduates with diverse backgrounds in a medical school. Methods: We developed a medical data mining course called "Practical Techniques of Medical Data Mining" for postgraduate medical education and taught the course online at Peking Union Medical College (PUMC). To identify the background knowledge, programming skills, and expectations of targeted learners, we conducted a web-based questionnaire survey. After determining the instructional methods to be used in the course, three technical platforms-Rain Classroom, Tencent Meeting, and WeChat-were chosen for online teaching. A medical data mining platform called Medical Data Mining - R Programming Hub (MedHub) was developed for self-learning, which could support the development and comprehensive testing of data mining algorithms. Finally, we carried out a postcourse survey and a case study to demonstrate that our online course could accommodate a diverse group of medical students with a wide range of academic backgrounds and programming experience. Results: In total, 200 postgraduates from 30 disciplines participated in the precourse survey. Based on the analysis of students' characteristics and expectations, we designed an optimized course structured into nine logical teaching units (one 4-hour unit per week for 9 weeks). The course covered basic knowledge of R programming, machine learning models, clinical data mining, and omics data mining, among other topics, as well as diversified health care analysis scenarios. Finally, this 9-week course was successfully implemented in an online format from May to July in the spring semester of 2020 at PUMC. A total of 6 faculty members and 317 students participated in the course. Postcourse survey data showed that our course was considered to be very practical (83/83, 100% indicated "very positive" or "positive"), and MedHub received the best feedback, both in function (80/83, 96% chose "satisfied") and teaching effect (80/83, 96% chose "satisfied"). The case study showed that our course was able to fill the gap between student expectations and learning outcomes. Conclusions: We developed content for a data mining course, with online instructional methods to accommodate the diversified characteristics of students. Our optimized course could improve the data mining skills of medical students with a wide range of academic backgrounds and programming experience.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Enhancing genetics education in medical school: An approach using a web-based course program.
    Taylor, S
    MacKenzie, J
    Harrison, K
    Sumargo, I
    Fleming, M
    Van Melle, E
    AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) : 346 - 346
  • [22] Examining Instructional Design and Development of a Web-Based Course: A Case Study
    Su, Bude
    INTERNATIONAL JOURNAL OF DISTANCE EDUCATION TECHNOLOGIES, 2005, 3 (04) : 62 - 76
  • [23] Web-Based Training: A case study on the development of an Intranet based training course
    Liegle, JO
    Madey, GR
    ASSOCIATION FOR INFORMATION SYSTEMS PROCEEDING OF THE AMERICAS CONFERENCE ON INFORMATION SYSTEMS, 1997, : 521 - 523
  • [24] POSTGRADUATE EDUCATION IN MEDICAL MICROBIOLOGY - SURVEY OF 17 YEARS OF COURSE LEADING TO DIPLOMA IN BACTERIOLOGY
    FARKASHIMSLEY, H
    RHODES, AJ
    CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 1978, 69 (03): : 253 - 256
  • [25] Medical Students' Experiences with Addicted Patients: A Web-Based Survey
    Midmer, Deana
    Kahan, Meldon
    Wilson, Lynn
    SUBSTANCE ABUSE, 2008, 29 (01) : 25 - 32
  • [26] A Web-Based Distance Education Course in Nutrition in Public Health: Case study
    Sigulem, Dirce M.
    Morais, Tania B.
    Cuppari, Lilian
    Franceschini, Sylvia C. C.
    Priore, Silvia E.
    Camargo, Katia G.
    Gimenez, Reinaldo
    Bernardo, Viviane
    Sigulem, Daniel
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2001, 3 (02) : 8 - 16
  • [27] A software framework for the development of Web-based medical education using learning object classes
    Wu, Ting
    Zimolong, Andreas
    Schiffers, Norbert
    Radermacher, Klaus
    MEDICAL INFORMATICS AND THE INTERNET IN MEDICINE, 2006, 31 (01): : 9 - 22
  • [28] Web-based analysis of data mining and decision support education
    Urbancic, T
    Skrjanc, M
    Flach, P
    AI COMMUNICATIONS, 2002, 15 (04) : 199 - 204
  • [29] A review of evaluation outcomes of web-based continuing medical education
    Curran, VR
    Fleet, L
    MEDICAL EDUCATION, 2005, 39 (06) : 561 - 567
  • [30] Web-based integrated procedural electronic medicine and medical education
    Ogunranti, J. O.
    MEDICAL TEACHER, 2009, 31 (06) : 562 - 562