Solvable Lie Algebras of Vector Fields and a Lie's Conjecture

被引:3
|
作者
Grabowska, Katarzyna [1 ]
Grabowski, Janusz [2 ]
机构
[1] Univ Warsaw, Fac Phys, Warsaw, Poland
[2] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
vector field; nilpotent Lie algebra; solvable Lie algebra; dilation; foliation; GRADED BUNDLES; HIGHER ANALOGS;
D O I
10.3842/SIGMA.2020.065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a local and constructive differential geometric description of finite-dimensional solvable and transitive Lie algebras of vector fields. We show that it implies a Lie's conjecture for such Lie algebras. Also infinite-dimensional analytical solvable and transitive Lie algebras of vector fields whose derivative ideal is nilpotent can be adapted to this scheme.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Solvable Lie algebras, Lie groups and polynomial structures
    Dekimpe, K
    COMPOSITIO MATHEMATICA, 2000, 121 (02) : 183 - 204
  • [22] Solvable Lie algebras derived from Lie hyperalgebras
    Safa, Hesam
    Norouzi, Morteza
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1934 - 1941
  • [23] The Lie algebra of polynomial vector fields and the Jacobian conjecture
    Herwig Hauser
    Gerd Müller
    Monatshefte für Mathematik, 1998, 126 : 211 - 213
  • [24] The Lie algebra of polynomial vector fields and the Jacobian conjecture
    Hauser, H
    Muller, G
    MONATSHEFTE FUR MATHEMATIK, 1998, 126 (03): : 211 - 213
  • [25] Duflo conjecture for solvable Lie groups
    Kouki, Sami
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 735 - 738
  • [26] Harmonicity of vector fields on a class of Lorentzian solvable Lie groups
    Tan, Ju
    Deng, Shaoqiang
    ADVANCES IN GEOMETRY, 2018, 18 (03) : 337 - 344
  • [27] Simple Lie-Solvable Pre-Lie Algebras
    V. N. Zhelyabin
    A. P. Pozhidaev
    U. U. Umirbaev
    Algebra and Logic, 2022, 61 : 160 - 165
  • [28] Simple Lie-Solvable Pre-Lie Algebras
    Zhelyabin, V. N.
    Pozhidaev, A. P.
    Umirbaev, U. U.
    ALGEBRA AND LOGIC, 2022, 61 (02) : 160 - 165
  • [29] COINVARIANTS OF LIE ALGEBRAS OF VECTOR FIELDS ON ALGEBRAIC VARIETIES
    Etingof, Pavel
    Schedler, Travis
    ASIAN JOURNAL OF MATHEMATICS, 2016, 20 (05) : 795 - 868
  • [30] CLASSIFICATION OF THE REALIZATIONS OF LIE ALGEBRAS FOR THE VECTOR FIELDS ON A CIRCLE
    Spichak, S., V
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (03) : 439 - 451