Adaptive boundary element methods for some first kind integral equations

被引:45
|
作者
Carstensen, C [1 ]
Stephan, EP [1 ]
机构
[1] UNIV HANNOVER,INST ANGEW MATH,D-30167 HANNOVER,GERMANY
关键词
adaptive boundary element method; a posteriori error estimate;
D O I
10.1137/S0036142993253503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an adaptive boundary element method for the boundary integral equations of the first kind concerning the Dirichlet problem and the Neumann problem for the Laplacian in a two-dimensional Lipschitz domain. For the h-version of the finite element Galerkin discretization of the single layer potential and the hypersingular operator, we derive a posteriori error estimates which guarantee a given bound for the error in the energy norm (up to a multiplicative constant). Following Eriksson and Johnson this yields adaptive algorithms steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically the expected convergence rate.
引用
收藏
页码:2166 / 2183
页数:18
相关论文
共 50 条