High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes

被引:592
|
作者
Chen, Yao [1 ,2 ]
Zhang, Xiong [1 ]
Zhang, Dacheng [1 ,2 ]
Yu, Peng [1 ,2 ]
Ma, Yanwei [1 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBE ELECTRODES; EXFOLIATED GRAPHITE OXIDE; ELECTROCHEMICAL CAPACITORS; FILMS; NANOSHEETS; REDUCTION; BEHAVIOR; STORAGE; MNO2;
D O I
10.1016/j.carbon.2010.09.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Partially reduced graphene oxide (RGO) has been fabricated using hydrobromic acid. Since hydrobromic acid is a weak reductant, some oxygen functional groups which are relatively stable for electrochemical systems remain in RGO. Therefore, RGO can be re-dispersed in water and 2-3 layers of graphene can be observed by transmission electron microscopy, showing excellent affinity with water. RGO facilitates the penetration of aqueous electrolyte and introduces pseudocapacitive effects. Moreover, its capacitive nature is enhanced after cycling measurements. It is concluded that the increase of capacitance is due to the reduction of the oxygen functional groups by the cyclic voltammetry and electrochemical impedance spectroscopy analysis. The electrochemical properties in the ionic liquid electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF(6)), are also investigated. At a current density of 0.2 A g(-1), the maximum capacitance values of 348 and 158 F g(-1) are obtained in 1 M H(2)SO(4) and BMIPF(6), respectively. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:573 / 580
页数:8
相关论文
共 50 条
  • [21] High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes
    Jayawickramage, Rangana A. Perera
    Ferraris, John P.
    NANOTECHNOLOGY, 2019, 30 (15)
  • [22] Reduced Graphene Oxide-Poly (Ionic Liquid) Composite Films of High Mechanical Performance
    Chang, Jian
    Zhou, Xianjing
    Zhao, Qiang
    Cao, Wei
    Zhang, Miao
    Yuan, Jiayin
    FRONTIERS IN MATERIALS, 2021, 8
  • [23] A Comprehensive Review of Novel Emerging Electrolytes for Supercapacitors: Aqueous and Organic Electrolytes Versus Ionic Liquid-Based Electrolytes
    Saha, Moumita
    Kumar, Ambrish
    Kanaoujiya, Rahul
    Behera, Kamalakanta
    Trivedi, Shruti
    ENERGY & FUELS, 2024, 38 (10) : 8528 - 8552
  • [24] Novel Organosilicon Ionic Liquid Based Electrolytes for Supercapacitors
    Zhong Hao-Xiang
    Zhao Chun-Bao
    Luo Hao
    Zhang Ling-Zhi
    ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (11) : 2641 - 2647
  • [25] Activated graphene oxide/reduced graphene oxide electrodes and low viscous sulfonium cation based ionic liquid incorporated flexible gel polymer electrolyte for high rate supercapacitors
    Suleman, Mohd
    Othman, M. A. R.
    Hashmi, S. A.
    Kumar, Yogesh
    Deraman, Mohamad
    Omar, R.
    Jasni, M. R. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 3376 - 3392
  • [26] Covalent functionalization of reduced graphene oxide aerogels with polyaniline for high performance supercapacitors
    Li, Ruijun
    Yang, Yue
    Wu, Datong
    Li, Kelin
    Qin, Yong
    Tao, Yongxin
    Kong, Yong
    CHEMICAL COMMUNICATIONS, 2019, 55 (12) : 1738 - 1741
  • [27] Far-infrared reduced graphene oxide as high performance electrodes for supercapacitors
    Xiang, Feng
    Zhong, Jing
    Gu, Ningyu
    Mukherjee, Rahul
    Oh, Il-Kwon
    Koratkar, Nikhil
    Yang, Zhenyu
    CARBON, 2014, 75 : 201 - 208
  • [28] Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors
    Tao, Hua-Chao
    Zhu, Shou-Chao
    Yang, Xue-Lin
    Zhang, Lu-Lu
    Ni, Shi-Bing
    ELECTROCHIMICA ACTA, 2016, 190 : 168 - 177
  • [29] MXene enhanced reduced graphene oxide aerogel for high-performance supercapacitors
    Wang, Zhenjiang
    Yang, Xinli
    Wang, Gang
    Yang, Xiping
    Qiao, Longhao
    Lu, Mingxia
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (07):
  • [30] Facile electrodeposition of reduced graphene oxide hydrogels for high-performance supercapacitors
    Viet Hung Pham
    Gebre, Tesfaye
    Dickerson, James H.
    NANOSCALE, 2015, 7 (14) : 5947 - 5950