A Digital Twin-Driven Methodology for Material Resource Planning Under Uncertainties

被引:9
|
作者
Luo, Dan [1 ]
Thevenin, Simon [1 ]
Dolgui, Alexandre [1 ]
机构
[1] IMT Atlantique, LS2N, CNRS, 4 Rue Alfred Kastler,BP 20722, F-44307 Nantes, France
关键词
Digital twin; Industry; 4.0; Material resource planning; Metaheuristics; Machining learning; Uncertainty; MRP; INTERNET; SYSTEM;
D O I
10.1007/978-3-030-85874-2_34
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the Industry 4.0 revolution currently underway, manufacturing companies are massively adopting new technologies to achieve the virtualization of their shop floor and the collaboration of their information systems. This process often leads to the construction of a real-time, collaborative, and intelligent virtual factory of their physical factory (so-called digital twin). The application of digital twins and frontier technologies in production planning still faces many challenges. But the research is still limited about how these frontier technologies can be applied to enhance production planning. This paper introduces how to enhance material resource planning (MRP) with digital twins and other frontier technologies, and presents a framework for the integration of MRP software with digital twin technologies. Indeed, the data collected from the shop floor can improve the accuracy of the optimization models used in the MRP software. First, several MRP parameters are unknown when planning, and some of these parameters may be accurately forecasted from the data with machine learning. Nevertheless, the forecast will never be perfect, and the variability of some parameters may have a critical impact on the resulting plan. Therefore, the optimization approach must properly account for these uncertainties, and some methods must allow building probability distribution from the data. Second, as the optimization models in MRP are based on aggregated data, the resulting plans are usually not implementable in practice. The capacity constraints may be acquired by communication with an accurate simulation of the execution of the plan on the shop floor.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 50 条
  • [31] Blockchain for the digital twin-driven autonomous optical network
    Pang, Yue
    Zhang, Min
    Zhang, Lifang
    Li, Jin
    Chen, Wenbin
    Wang, Yidi
    Wang, Danshi
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (03) : 278 - 293
  • [32] Digital Twin-Driven Design of an Ice Prediction Model
    Serino, Andrea
    Dagna, Alberto
    Brusa, Eugenio
    Delprete, Cristiana
    AEROSPACE, 2025, 12 (02)
  • [33] Digital twin-driven real-time planning, monitoring, and controlling in food supply chains
    Maheshwari, Pratik
    Kamble, Sachin
    Belhadi, Amine
    Venkatesh, Mani
    Abedin, Mohammad Zoynul
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 195
  • [34] Digital Twin-Driven Human Robot Collaboration Using a Digital Human
    Maruyama, Tsubasa
    Ueshiba, Toshio
    Tada, Mitsunori
    Toda, Haruki
    Endo, Yui
    Domae, Yukiyasu
    Nakabo, Yoshihiro
    Mori, Tatsuro
    Suita, Kazutsugu
    SENSORS, 2021, 21 (24)
  • [35] Digital Twin-Driven Tool Condition Monitoring for the Milling Process
    Natarajan, Sriraamshanjiev
    Thangamuthu, Mohanraj
    Gnanasekaran, Sakthivel
    Rakkiyannan, Jegadeeshwaran
    SENSORS, 2023, 23 (12)
  • [36] Management of Digital Twin-Driven IoT Using Federated Learning
    Abdulrahman, Sawsan
    Otoum, Safa
    Bouachir, Ouns
    Mourad, Azzam
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3636 - 3649
  • [37] A review of digital twin-driven machining: From digitization to intellectualization
    Liu, Shimin
    Bao, Jinsong
    Zheng, Pai
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 67 : 361 - 378
  • [38] Digital twin-driven fault diagnosis for CNC machine tool
    Xue, Ruijuan
    Zhang, Peisen
    Huang, Zuguang
    Wang, Jinjiang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (11): : 5457 - 5470
  • [39] Digital twin-driven fault diagnosis for CNC machine tool
    Ruijuan Xue
    Peisen Zhang
    Zuguang Huang
    Jinjiang Wang
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 5457 - 5470
  • [40] A digital twin-driven production management system for production workshop
    Ma, Jun
    Chen, Huimin
    Zhang, Yu
    Guo, Hongfei
    Ren, Yaping
    Mo, Rong
    Liu, Luyang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (5-6): : 1385 - 1397