Areca-inspired core-shell structured MnO@C composite towards enhanced lithium-ion storage

被引:25
|
作者
Zhu, Lingfeng [1 ]
Wang, Yun [1 ]
Wang, Minji [1 ]
Xiong, Yaping [2 ]
Zhang, Ze [1 ]
Yu, Ji [1 ]
Qu, Yaohui [3 ]
Cai, Jianxin [2 ]
Yang, Zhenyu [1 ,4 ]
机构
[1] Nanchang Univ, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Resources Environm & Chem Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Jiangxi Normal Univ, Sch Phys Commun & Elect, Jiangxi Key Lab Nanomat & Sensors, Nanchang 330022, Jiangxi, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Guangdong, Peoples R China
关键词
Conversion-type anode materials; Areca-inspired; Core-shell structure; MnO@C composite; Lithium-ion batteries; ANODE MATERIALS; PERFORMANCE; MICROSPHERES; BIOMASS; DESIGN;
D O I
10.1016/j.carbon.2021.08.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO based composites are regarded as advanced conversion-type anode materials for lithium-ion batteries (LIBs) due to the low cost and high theoretical specific capacities (similar to 756 mA h g(-1)). Nevertheless, the undesirable structural stability and sluggish electrochemical reaction kinetics of the electrode materials lead to poor lithium storage performance. Herein, inspired by the structure of areca, the areca-like core-shell MnO@C composites containing of the MnO core and N-doped porous carbon shell are prepared via a biomass-assisted strategy. The formation mechanism of the MnO@C composites with well-defined core-shell structure are successfully clarified through heterogeneous contraction and carbon pyrolysis processes. As anodes for LIBs, the MnO@C composite delivers superior specific capacities of 915.9 and 218.1 mA h g(-1) at 0.1 and 5.0 A g(-1), respectively, and maintains outstanding cycling performance over 900 cycles at 1.0 A g(-1). More importantly, electrochemical kinetics tests further confirm that the improved LIBs capacity mainly originated from the unique areca-like core-shell structure and self-N doped porous carbon shell. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:706 / 713
页数:8
相关论文
共 50 条
  • [31] Core-shell structured electrode materials for lithium ion batteries
    Zhang, H. P.
    Yang, L. C.
    Fu, L. J.
    Cao, Q.
    Sun, D. L.
    Wu, Y. P.
    Holze, R.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (10) : 1521 - 1527
  • [32] Synergistically Enhanced Electrochemical Performance in Electrospun Core-Shell Nanofiber for Lithium-Ion Batteries
    Sun, Caihua
    Liu, Jifei
    Xin, Duqiang
    Zhu, Xiaojun
    Hu, Shuntao
    CHEMISTRYSELECT, 2020, 5 (44): : 13819 - 13823
  • [33] Facile Synthesis of Ge@C Core-Shell Nanocomposites for High-Performance Lithium Storage in Lithium-Ion Batteries
    Wang, Ying
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (12) : 3142 - 3146
  • [34] A twins-structural Sn@C core-shell composite as anode materials for lithium-ion batteries
    Wang, Yan
    Ma, Zengsheng
    Lu, Chunsheng
    COMPOSITE INTERFACES, 2016, 23 (04) : 273 - 280
  • [35] Preparation of core-shell Si/C/graphene composite for high-performance lithium-ion battery anodes
    Zhou, Xiaoming
    Liu, Yang
    SYNTHETIC METALS, 2024, 309
  • [36] Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries
    Tao, Huachao
    Fan, Li-Zhen
    Song, Wei-Li
    Wu, Mao
    He, Xinbo
    Qu, Xuanhui
    NANOSCALE, 2014, 6 (06) : 3138 - 3142
  • [37] Preparation of C@SnO2 core-shell nanostructure with enhanced electrochemical performance for lithium-ion batteries
    Zhang, Y. K.
    Wang, H.
    Zhang, W. X.
    Zhao, P.
    He, C.
    IONICS, 2022, 28 (01) : 181 - 189
  • [38] Morphological and Structural Evolution of MnO@C Anode and Its Application in Lithium-Ion Capacitors
    Zhang, Jie
    Lin, Jie
    Zeng, Yibo
    Zhang, Ying
    Guo, Hang
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (11): : 8345 - 8358
  • [39] Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries
    Liu, Ruiqing
    Li, Deyu
    Wang, Chen
    Li, Ning
    Li, Qing
    Lu, Xujie
    Spendelow, Jacob S.
    Wu, Gang
    NANO ENERGY, 2014, 6 : 73 - 81
  • [40] PbO@C core-shell nanocomposites as an anode material of lithium-ion batteries
    Pan, Qinmin
    Wang, Zijia
    Liu, Jia
    Yin, Geping
    Gu, Min
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) : 917 - 920