System identification of nonlinear state-space models

被引:418
|
作者
Schon, Thomas B. [1 ]
Wills, Adrian [2 ]
Ninness, Brett [2 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
澳大利亚研究理事会; 瑞典研究理事会;
关键词
System identification; Nonlinear models; Dynamic systems; Monte Carlo method; Smoothing filters; Expectation maximisation algorithm; Particle methods; PARAMETER-ESTIMATION; MAXIMUM-LIKELIHOOD; PARTICLE METHODS;
D O I
10.1016/j.automatica.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [21] State-Space Recurrent Fuzzy Neural Networks for Nonlinear System Identification
    Wen Yu
    Neural Processing Letters, 2005, 22 : 391 - 404
  • [22] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498
  • [23] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [24] State-space recurrent fuzzy neural networks for nonlinear system identification
    Yu, W
    NEURAL PROCESSING LETTERS, 2005, 22 (03) : 391 - 404
  • [25] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [26] Shooting methods for identification of nonlinear state-space grey-box models
    Retzler, Andras
    Swevers, Jan
    Gillis, Joris
    Kollar, Zsolt
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 207 - 212
  • [27] CVA Identification of Nonlinear Systems with LPV State-Space Models of Affine Dependence
    Larimore, Wallace E.
    Cox, Pepijn B.
    Toth, Roland
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 831 - 837
  • [28] Deep State Space Models for Nonlinear System Identification
    Gedon, Daniel
    Wahlstrom, Niklas
    Schon, Thomas B.
    Ljung, Lennart
    IFAC PAPERSONLINE, 2021, 54 (07): : 481 - 486
  • [29] Identification of MIMO switched state-space models
    Bako, Laurent
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 71 - 76
  • [30] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357